
SMU Data Science Review SMU Data Science Review

Volume 1 Number 2 Article 5

2018

Supervised Machine Learning Bot Detection Techniques to Supervised Machine Learning Bot Detection Techniques to

Identify Social Twitter Bots Identify Social Twitter Bots

Phillip George Efthimion
Southern Methodist University, phillip.efthimion@gmail.com

Scott Payne
Southern Methodist University, m.scott.payne@gmail.com

Nicholas Proferes
University of Kentucky, nproferes@uky.edu

Follow this and additional works at: https://scholar.smu.edu/datasciencereview

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Efthimion, Phillip George; Payne, Scott; and Proferes, Nicholas (2018) "Supervised Machine Learning Bot
Detection Techniques to Identify Social Twitter Bots," SMU Data Science Review: Vol. 1: No. 2, Article 5.
Available at: https://scholar.smu.edu/datasciencereview/vol1/iss2/5

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol1
https://scholar.smu.edu/datasciencereview/vol1/iss2
https://scholar.smu.edu/datasciencereview/vol1/iss2/5
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol1/iss2/5?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

Supervised Machine Learning Bot Detection

Techniques to Identify Social Twitter Bots

Phillip G. Efthimion1, Scott Payne1, Nick Proferes2

1Master of Science in Data Science, Southern Methodist University

6425 Boaz Lane, Dallas, TX 75205

{pefthimion, mspayne}@smu.edu

nproferes@uky.edu

Abstract. In this paper, we present novel bot detection algorithms to identify

Twitter bot accounts and to determine their prevalence in current online

discourse. On social media, bots are ubiquitous. Bot accounts are problematic

because they can manipulate information, spread misinformation, and promote

unverified information, which can adversely affect public opinion on various

topics, such as product sales and political campaigns. Detecting bot activity is

complex because many bots are actively trying to avoid detection. We present a

novel, complex machine learning algorithm utilizing a range of features

including: length of user names, reposting rate, temporal patterns, sentiment

expression, followers-to-friends ratio, and message variability for bot detection.

Our novel technique for Twitter bot detection is effective at detecting bots with

a 2.25% misclassification rate.

1 Introduction

The dominance of human users as the primary generators of Internet traffic is coming

to an end. In 2016, bots generated more Internet traffic than humans [14]. A bot is a

piece of software that completes automated tasks over the Internet. On social media,

the prevalence of bots is ubiquitous. By some estimates, nearly 48 million Twitter

accounts are automated [13]. Although many bots, such as ‘fake follower bots’, are

easy to detect bots that mimic human behavior and seek to spread information while

posing as a human user are more difficult to detect.

 Bots serve a plethora of purposes, many of which provide services to users. Bots

are categorized as “good” or “bad” based on the transparency with which they

disclose their identity. These ‘social spambots’ can serve a variety of purposes, but

can be very difficult to detect, even by human observers [15]. Bad bots do not identify

themselves to the web servers they access, while good bots declare and identify

themselves. Roughly 44% of Internet bot traffic is categorized as good and the other

56% is categorized as bad [14]. The ability to detect bot accounts on social media

sites like Twitter is important for a healthy information exchange ecosystem.

 Studies suggest that in the months leading up to the 2016 U.S. Presidential

Election, a fifth of all tweets on Twitter that were related to the election came from a

legion of bot accounts [1]. Taking up a large percentage of the political discourse in a

1

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

mailto:mspayne%7d@smu.edu

well-travelled setting, these bots had a large effect on the Presidential Election by

refracting the natural conversations of the issues and events surrounding it.

Identifying bots on Twitter have become such an issue that DARPA has held a

competition in order to foster new strategies in countering bots on Twitter designed to

influence other users.

 Identifying problematic bots will allow Twitter users to be shielded by groups that

aim to affect the perception of how entities and events are actually being perceived by

Twitter’s user base. This can lead to users having a skewed perception of the events

around them. When working together in large clusters, bots have the ability to push

narratives that could be false and misleading. Bots are not necessarily bad. Many

serve useful purposes, but the ability to detect bot accounts protects the spontaneous

nature of information exchange on social media platforms like Twitter. Additionally,

methods to detect bots on Twitter are becoming more complex as the bots themselves

and their purposes become more complex. At this point simple equations will not

accurately identify bots.

 By readily identifying Twitter accounts as bots, users will be educated not to be

fooled and manipulated by bot messages on Twitter. Additionally, if bots are

discovered early, their messages will not be further amplified by people forwarding

them.

 A rule-set can be developed to test Twitter accounts to see if they are bots by

observing rule-sets from other studies and with bridging different areas to classify

together. Twitter users and researchers can use rule-sets to test if accounts are bots.

By training and testing these rules on a dataset where each account is confirmed and

classified to be a bot accounts can be tested live on Twitter. If accounts can be

classified as a bot in real-time, users will be safeguarded against messages and

narratives pushed by bots on Twitter.

 The rule set has proved to be very effective in classifying bots. When tested against

different categories of bot accounts, the rule set proved was very effective and scored

high marks in accuracy and true positivity rate. The true positivity rate tells us the

percentage of Twitter accounts predicted to be true were actually true. This statistic is

an important indicator that there are a low percentage of false positives and

misclassification of accounts as bots when they are actually run by people. However,

not every variable can be tested in real time, although they were still accurate. This

list of variables is not believed to be comprehensive, but does provide an idea of how

important these factors can be. Further advanced factors are believed to be needed to

identify more sophisticated bots.

 The remainder of this paper is organized as follows: In Section 2, background

information on the subjects from related works is provided. Section 3 contains a

description of the data and an initial analysis. Section 4 explains the novel method to

classify Twitter accounts as humans or bot driven. Results are presented in Section 5,

followed by the ethical ramifications of bots in social media in Section 6. Finally, a

conclusion and plan for future work to be performed in Section 7.

2

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

2 Related Work

2.1 Twitter

Twitter, launched in 2006, is a microblogging (extremely short-form blogging), social

media network [5]. Communicating via tweets, which are limited in size to only 280

characters, users relay messages to each other. These messages can be in the forms of

tweeting, authoring messages; replying, responding to another person’s message; and

direct messaging, tweeting a message to another user that is not available for view to

the public. User accounts converse with each other by tagging each other with the

“@” symbol preceding the target account’s name. Additionally, users have the ability

to interact with other accounts on specific topics by using the hashtag symbol “#”.

Any tweet containing the hashtag symbol is grouped on a timeline of all tweets that

contain that same hashtag.

Users can self-aggregate content they want to see by choosing the accounts they

follow. Accounts they follow can be friends, companies, institutions, writers,

celebrities, or politicians. Users are also able to communicate and further distribute

content by ‘liking’ and ‘retweeting’ users’ tweets. A tweet that is retweeted is added

the user’s timeline; a collection of posts that are created by or mention the user.

Accounts that follow a user are able to see all content on their timeline.

Twitter activity has been classified into 4 main categories: daily chatter,

conversations, URLs, and reporting news [5]. Daily chatter is users informing others

about their daily lives. Conversations occur when users tag each other using the ‘@’

symbol. URLs are used to share links to other websites with other users. Reporting

news is discussion about current events. These categories can also blend together.

News is spread on Twitter through using URLs to link to news articles.

Twitter was estimated to have 69 million monthly active users by the third quarter

of 2017 in the United States [10] and 330 million worldwide [12], giving it a global

reach. This is substantial growth since its 30 million monthly active users worldwide

in the first quarter of 2010 [11].

Twitter became an effective tool in presidential elections to spread political

messages. In the 2012 US presidential election, there were 45 million monthly active

accounts and the number jumped to 67 million monthly active users in the most recent

presidential election in 2016.

2.2 Bots

An Internet bot is an automated software application. It can run any range of tasks and

does so repetitively. The implementation of bots on the Internet is so widespread that

bots made up 50% of all online traffic in 2016 [14]. Some of the tasks that bots

perform are feed fetchers, commercial crawlers, monitoring, and search engine bots.

For example, feed fetchers change the display of websites when they are accessed for

mobile users and search engine bots collect metadata that allows the search engine to

perform. These tasks shape the Internet as we see it daily.

3

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Chu et al. classifies Twitter accounts as human, bot, or cyborg accounts [21]. The

distinction between these three classifiers is the level of automation placed on the

account. An account that Chu et al. classified as human had no activity that is

automated [21]. An account where all of its activity is automated is considered a bot.

An account that is a mix of automated and non-automated tweets is considered a

cyborg. An account that is classified as a cyborg can be run two different ways. The

account could be run in a way that would be classified as a human, but also have

some automated messages. An account that is classified as a cyborg could also be

automated for all of its activity, but it’s controller may sometimes send other, non-

scheduled tweets. An example of an automated tweet could be a media company’s

Twitter account tweeting a link to an article on its website each time an article is

published. This is also an example of a benign bot.

2.3 Twitter Bots

A Twitterbot is an Internet bot that operates from a Twitter account. Some of the tasks

that can be automated from a Twitter bot are writing Tweets, retweeting, and liking.

Twitter does not mind the use of Twitter bot accounts as long as they do not break the

Terms of Service through actions such as Tweeting automated messages that are spam

or Tweeting misleading links.

Twitter bots, like bots in general, serve a variety of purposes ranging from simple

tasks such as following a user to more complex tasks like engaging in discussion with

other users. Social bots are a type of bot that interacts with users and whose purpose is

to generate content that promotes a particular viewpoint. The veracity of the content is

irrelevant to the detection of the social bot. It is estimated that between 9 and 15

percent of Twitter accounts are bots [13]. The goal of our bot detection research is to

develop refined techniques that are able to detect social bots that are actively avoiding

being caught by traditional bot detection techniques.

There are many types of bots on Twitter. One type of bot exists only to artificially

increase the number of followers that an account has [4]. The number of Twitter

followers determines its influence because the extent of the followers determines how

widely spread is the account’s message. and the weight it’s message receives. People

are more likely to trust an account with 1 million Twitter followers than 100 [5].

Using bots to artificially inflate the number of followers an account is a way to

increase one’s popularity and attract more human followers [2].

3 Data

The test data consists of different types of bot accounts. This cluster of accounts make

up the Cresci-2017 dataset. In the Cresci-2017 dataset, we have three groups each of

social spambots and traditional spambots [4]. The social spambots are separated into

three main groups. The first group is accounts that retweeted a political candidate in

Italy. The second group is spambots attempting to get users to download a mobile

app. The third group consists of spambots trying to sell products on Amazon.com.

4

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

The traditional spambots are also separated into three main groups. The first group is

general spambots without a focus. The second group is spambots that attempt to

promote a web URL for users to click on [4]. The third group of traditional spambots

are trying to push job offers onto users and for the users to click a given URL [4].

Additionally, we have another type of bot that is fake followers [4]. A fake follower

account is one that exists to just make a user appear more popular or influential than

they are. Finally, we have a type of accounts that have been verified to be ‘real’, used

by humans. These ‘real’ accounts were tested by Cresci by contacting users directly,

to which their responses had to be manual [4]. For each of these types, there are two

separate files: one for user’s profile data and one for the user’s tweets data. This is

one of the datasets used by Botometer in order to train their model [3]. Botometer is a

bot detection tool developed by Indiana University Network Science Institute. It

operates by inputting the username of a Twitter account and it outputs a percent likely

that the inputted account is a bot [3]. Though, the tweets may not be as current and

from this year, these accounts have been verified to be bots or used by humans.

Downloading current Twitter data from random users cannot be used to train the

algorithm unless the account is classified. Classification allows the algorithm to

classify a test set of accounts. Without an account having this distinction, which is

primarily the case when

Table 1. Distribution of number of account and tweets by Dataset within Cresci 2017 dataset

Grouping Number of Accounts Total number of Tweets

Social Spambots 4,912 3,457,344

Traditional Spambots 1,533 6,014,982

Fake Followers 3,351 196,027

Real Users 3,474 8,377,522

 There is also a dataset of accounts and their tweets collected by NBC News and

released February 14, 2018. They are a group of tweets that Twitter has deemed to

have participated in “malicious activity” with concern to this past U.S Presidential

Election in 2016 [22]. These bots were a part of networks of accounts that had

interacted with over one million users, which Twitter had to notify. These accounts

have since been suspended by Twitter but can give us insight into current bot

behaviors [22]. The data set consists of 454 accounts and 203,483 tweets written by

them.

 Figure 1 is the distribution of Twitter accounts by bot type. The largest datasets

used for this project are the first and second social spambot groups and the second

group of traditional bots. The type of bot with the lowest number of Twitter accounts

is the fake followers dataset with less than 500 accounts. The Russian bot dataset also

has just under 500 Twitter accounts. There are about 1,000 Twitter accounts in our

overall dataset that have been confirmed to be both not automated and human run

which are referred to as ‘real users’.

5

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Fig. 1. Distribution of Twitter Accounts versus type and group datasets.

 Figure 2 is the distribution of account followers for the different types and groups

of bot datasets. The Twitter accounts in the Russian dataset have the most followers

of our datasets. They have almost twice as many as the next highest on average. The

Russian dataset has on average over 8,000 followers. Real user accounts have less

than 1,000 followers on average. A lot less on average than the majority of bot

accounts.

Fig. 2. Distribution of account followers for the different types and groups of bots.

Figure 3 is the average number of friends per Twitter account in each dataset. All

of the different bot datasets have friended more people than the fake followers

dataset. The second social spambot dataset averages having almost 2,000 friends on

Twitter. This is then followed by the accounts in the second traditional and third

social bot dataset. The real accounts have sent the fourth most tweets averaging over

1,000. It makes sense that the fake followers would have a very low average of

friends because they exist only to follow other accounts.

6

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

Fig. 3. Average number of friends per Twitter account in each dataset.

 Figure 4 is the average number of tweets per account in each dataset. The second

social spambots dataset on average has tweeted the most times, over 16,000 times.

The next highest are the accounts in the Russian bot dataset and then followed by the

second traditional spambot dataset. Real accounts on average have tweeted less than

1,000 times.

Fig.4. Average Number of Tweets Per Account Per Dataset

Figure 5 is the average number of favorites per account per dataset. Individual

account owner will designate a Twitter posting as a “favorite.” The account with the

most favorites on average is the second social spambots dataset. Its accounts average

almost 4,500 favorites. This is followed by the third social spambots dataset which

averages over 1,000 favorites. The first traditional spambot dataset averages almost

150 favorites per tweet. The remaining datasets average under 50 favorites per tweet.

7

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Fig. 5. Average Number of Favorites Per Account Per Dataset

4 Methods and Analysis

On Twitter, information can be gained about a user from their personal account

information, tweets, likes, retweets, and direct messages. Users’ direct messages are

not accessible for privacy reasons. To identify bots, we set up three basic areas for

analysis: profile, account activity, and text mining [7].

-Profile: On social media platforms, most users place some personal information

about themselves or details to express their individuality. An example of this is a

Twitter user’s profile image. The image can be of the user, a corporation, or other

image that expresses a characteristic that the user wants identified with their account.

Lack of such imagery and individual information might be a sign that a Twitter

account is a bot. Bots can lack these profile details when a botnet system creates

many bots at once. However, these are not sure signs that a Twitter account is run by

a bot. With the privacy concerns of today, some users on social media accounts may

intentionally hold back personal information to prevent their information from being

stolen. We test 14 variables related to each Twitter user’s profile to see if an account

is a bot. Each of these variables is described in further detail below.

A unique screen name is required for a Twitter account and cannot be changed. It is

the account’s unique identifier. However, the account’s name is optional and can be

changed any number of times. We test if an account has a name at all.

Under this philosophy, we also test if an account has a profile picture. Social media

accounts will have some form of individuality and a profile picture is the most

common. Accounts without those or the default profile image are more likely to be

bots.

Main user engagement on Twitter is through reading the content of accounts that

are followed. Bots have no reason to follow other accounts as they are trying to

disseminate information, not learn from following others. Therefore, we classify an

account as a bot if it follows less than 30 accounts.

8

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

On the other hand, we do not expect most users to have a large number of friends,

accounts which receive and read their tweets, as this would overwhelm their timeline.

Therefore, we place a cap on the number of friends an account has. An account with

over 1000 friends is marked as a bot.

In addition to the absolute quantity, it is also informative to look at the ratio

between the number of friends and the amount of followers an account has. Looking

at others research [4], there are different rulesets for classifying bots by this ratio. The

StateOfSearch.com ruleset asks for a friend to follower ratio of 100:1 for

classification purposes while Socialbaker’s FakeFollowersCheck believes only a 50:1

ratio is required. Both have been selected as factors for the algorithm.

Turning on geo-location is another indication of a human user, because it is an

account setting bots have no need with which to engage.

The primary goal of some types of bots, such as spambots, is to initiate clicks of a

link. The link could be for directing web traffic to a website or to download malicious

software on an unsuspecting user. There are many valid reasons for accounts run by

humans to contain links, such as to their home websites or online portfolios.

Therefore, we take into account this single variable amongst the other 13 variables to

determine whether an account is classified as a bot.

Interaction is a bedrock of social media. The volume of tweets generated by an

account can distinguish between humans and bots of different intentions. We choose

to make the cut off for human accounts a minimum of 50 tweets. We also believe that

accounts that are purely fake followers will have never sent a tweet while other types

of bots, such as traditional spambots, will have created some statuses to appear real.

Therefore, we are grouping bots into related categories of if they contain less than 20

tweets and absolutely zero tweets.

The final profile variable is whether an account has a personalized description.

Again, because bot accounts can be made thousands at a time they lack these

customizations to be created more quickly.

-Account Activity: Account activity is also an indication if an account is operating

by a bot. A bot’s automated activity is identified through abnormal user patterns, such

as posting all hours of the day and night and posts occurring at the exact time daily or

weekly. With Twitter, users are able to pre-set a written tweet to be sent at a certain

time. An account that sends a tweet at the same time daily, maybe advertising a

limited time offer, would be an example of activity similar to how a bot would

behave.

 -Text Mining: Text mining also gives insight on whether an account is bot

controlled. To disseminate their misinformation, bot accounts may post the same, or

very similar, messages repeatedly to evade Twitter’s spam filters, which identify

repeated messages. Some bots are capable of slightly modifying their original

message. We use the Levenshtein distance to measure for similarity of users’ tweets.

[4]. The Levenshtein distance is the measurement of how many changes would need

to be made to convert a first string into a second [4]. A simple example would be how

many changes would have to be made to make the word ‘Dallas’ into the word

‘Texas’. By mining the text data, we see these patterns with the messages a Twitter

account is sending. The following paragraphs describe the types of patterns in the text

that indicate bot activity.

9

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Spam bot accounts try to get other users to click on a website link. Therefore, if text

mining concludes the presence of the same string of text in the messages, this may

indicate a link and bot activity. There are other text patterns to look for, including the

strings ‘http’, https’, ‘www’, and ‘bit.ly,’ which identify that there are links to third

party websites in a message [1] [4].

 Spam comments in blogs contain unnecessary spaces to mask specific words that

would otherwise be flagged by filters. To capture these instances, we deleted all

spaces from the tweets and measured through the Levenshtein distance.

Applying the Levenshtein distance to a large dataset is very computationally

expensive. Therefore, only a smaller sample of data is used when testing the

Levenshtein distance.

Table 2. Bot Classification Variables By Area of Analysis

Area of Analysis Variable

Profile

Absence of id

Absence of a profile picture

Absence of a screen name

Has less than 30 followers

Not geo-located

Language not set to English

Description contains a link

Has sent less than 50 tweets

2:1 friends/followers ratio

Has over 1,000 followers

Has the default profile image

Has never tweeted

50:1 friends/followers ratio

100:1 friends/followers ratio

Absence of a description

Text Analysis Levenshtein distance between user’s

tweets is less than 30

After analyzing the data for each of the variables tested for the result is placed into

a binary matrix. This new matrix is preparation for analysis via support vector

machining.

Table 3. Subset of Discrete Matrix to prepare for support vector machine

10

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

However, before using the support vector machining algorithm, on our data,

logistic regression is applied. This process of logistic regression followed by applying

support vector machining was done so based on Eric Larson’s instructional guide

[23]. Logistic regression is excellent for preparing data for support vector machining

because it outputs the data into binary classifications. This is required for support

vector machine.

Support vector machining is used to test our bot detection model against different

datasets of known Twitter bots. The efficacy of the model is evaluated by the

misclassification rate (error rate) and the true positive rate. A low misclassification

rate means we are not misidentifying accounts owned by real people as bots. The

misclassification rate is derived by 1 – accuracy of model. The true positive rate is the

rate that our algorithm correctly predicts that an account is a bot.

5 Results

Compared against social spambots our model is 95.77% accurate, with a

misclassification rate of 4.23% The true positive rate of this model for social

spambots is 96.81%. This means that we are correctly identifying that something is a

11

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

bot 96.81% of the time which is slightly better than the model’s accuracy. This was

done with a total dataset of 8,386 total accounts; 4,912 social spambots and 3,474 real

accounts.

Looking at the weights in Figure 6, we can see that being geo-located was the best

indicator that an account is a social spambot. In terms of readily available information

that a user has when browsing Twitter, if the account has less than 30 followers is the

best indicator. Variables that weighed negatively with our data were if there was a

link in the banner, if the language was set to English, if the account had a profile

picture and if the account had over 1000 friends.

Fig. 6. Logistic Regression weights for social spambots

For tradition spambots in our model, we had an accuracy of 96.25%,

misclassification rate of 3.75%, and true positive of 97.13%. As shown below the

weights for the variables in the logistic regression before the support vector

machining were similar to the ones above for the social spambots.

12

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

Fig. 7. Logistic Regression weights for traditional spambots

We also want to show that even though the banner_link looks like it is negatively

impacting our model the density curves as instances chosen by the support vectors has

not. Actually, we have found that removing the banner_link variable reduces the

accuracy and true positive rate by over 5%.

The last type of bots that we compare our model to is the fake followers. With our

model, looking only at the profile information, we had 100% accuracy and 100% true

positive rate. This also means that there were no mis-classified variables. This is the

type of bot that our model has identified the best. The weighting from the logistic

regression beforehand also looks very different from the two types of spambots. The

highest indicator for a fake_follower type of bot was if it had a profile picture. As

these types of accounts are not expected to interact in any way with other users, less

basic information for them is created. Other important indicators for identifying fake

followers are if the accounts had at least 30 followers, had written 50 tweets, and had

twice the number of followers than friends.

13

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Fig. 8. Logistic Regression Weights for Fake followers bots

For the confirmed Russian bots datasets gathered from NBC News, our model

provides a 99.87% accuracy along with a 0.13% misclassification rate and a 98.91%

true positive rate. From the logistic regression weights, the profile picture is the most

important indicator in deciding if an account is a bot.

Fig. 9. Logistic Regression Weights on confirmed Russian bots

We will now show the performance of our classification model when using all of

the types of bots we have in our dataset. This consists of a total of 16,649 Twitter

accounts. Our model scored a 97.75% with a 2.25% misclassification rate and 98.98

14

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

true positivity rate. Here is a chart that summarizes our classification findings while

using support vector machining on the profile information.

Table 4: Profile Analysis Results

 Accuracy Misclassification

Rate

True Positive Rate

Social Spambot 95.77% 4.23% 96.81%

Traditional

Spambot

96.25% 3.75% 97.13%

Fake Followers 100% 0% 100%

NBC News

Russian Bots

99.87% 0.13% 98.91%

Total 97.75% 2.25% 98.98%

A subset of the Russian bots and real user accounts is used for the text analysis. It

scored to be 90% accurate and therefore had a 10% misclassification rate. The true

positive rate for these results is 100%.

Fig.10. Logistic Regression of Levenshtein Distance

Using the same subset of the data as we did in figure 9, a complete analysis is

performed using all of the variables analyzing the profile and the text. It has 100%

accuracy, 0% misclassification rate, and 100% true positive rate. However, this

analysis is done on a much smaller sample size.

15

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Fig. 11. Logistic Weights for all bots using all variables

On the same smaller sample, support vector machine is performed using every one

of the variables. It had a 100% accuracy, 0% misclassification rate, and 100% true

positivity rate.

6 Analysis

When using variables related to the Twitter account’s profile, only 4.25% of the data

is misclassified. Also, 96.81% of the social spambots are correctly predicted.

Geolocation and having less than 30 followers were very influential weights for the

model. Interestingly, it is seemingly not an important factor that social spambots,

which attempt to get users to click on links, do not have links in their profile’s

description.

The traditional spambots performed similarly to the social spambots, but the

analysis performed slightly better. Only 3.75% of accounts became misclassified and

the true positivity rating is 97.13%. The weights between the traditional spambots and

social spambots are nearly identical. This shows that there is similarity in how the two

bot types are constructed.

The fake followers bots were classified accurately in 100% of cases. This along

with 0% misclassified, and 100% true positivity rating means that this is the type of

bot the model is performing best at diagnosing. This is most likely because fake

followers type bots do not perform activities besides following users. Therefore,

variables from just using profile information should be enough to properly classify

them.

16

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

We trained the data on these 3 types of bots and then tested the trained data on the

dataset of confirmed Russian bots. When tested, the model only misclassified 2.25%

of the users and had a true positivity rating of 98.98%. It is possible that these results

scored higher that with the social spambot or traditional spambots because there could

have been some accounts that were of the fake follower type which would inflate the

scores. The heaviest weighted factor is whether an account had a profile picture. It is

interesting that geolocation and having the account’s settings set to English did not

weigh heavily in the analysis considering these bots were Russian in origin. This

means that many Russian bots have their language settings set to English. Writing in

English would significantly increase the chance a bot would have a native English

speaker interact with them because there would be no language barrier.

When testing for Levenshtein distance, even though the model was 90% accurate,

this is most likely due to overfitting. This analysis will need to be redone with a larger

dataset. Calculating the Levenshtein distance for the entire dataset is computationally

heavy. A more efficient method will have to be researched in order for this variable to

be effective in this analysis.

7 Ethics

There are many ethical issues regarding the use of public data gathered from the

internet. In the world of social media, the information collected contains personal data

that is linked to user accounts that could be linked to an individual’s identity. We

must ensure that we collect our data and use it in an ethical manner and obey all of

Twitter’s guidelines on fair use. These guidelines allow for the collection of Twitter

data using proper methods to then be used in research, but the guidelines are

constantly evolving. Twitter initially allowed any Twitter data collected in the proper

way to be shared as a complete data set. Twitter has now amended its policies to only

allow the sharing of account or tweet IDs as a data set. This requires researchers to

populate the data using their own API key in a process known as “rehydrating”. While

this provides more protection for users to have their information removed from

Twitter and not appear in future data sets that are “rehydrated” after the date a user

has deleted their accounts or tweets, it complicates matters for researchers.

One of the first ethical issues is that of informed consent [17]. In studies, subjects

must opt into the study in order for their work to be used. This is to ensure that

subjects know exactly what the study is and what they are signing up for. However,

Twitter is a public social media forum, where anyone can read a publicly shared

tweet. Therefore, it can be argued that consent is not needed in this case. There could

also be the case of that we are taking information from an account, not a person. A bot

account may not even be able to process what it is being asked. Also, Twitter’s Term

and Conditions have this policy outlined that bot accounts need to identify themselves

as such. One possible way to combat this issue is as Webb et al. described as an opt

out approach. This is where we send each account a message saying that they can opt

out of the study if they so choose.

Two other issues Webb et al. describe are do no harm and protect anonymity [17].

Only a small portion of Twitter accounts (primarily celebrity and corporate/brand

17

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

accounts) have their identities confirmed and a large amount use false names for an

online persona. It is common practice to hide any personal information when

performing a study, which can easily be done by not showing any account names.

However, the contents of a tweet could be enough to reveal a user’s identity using its

contents and timestamp. Using the Twitter API, it would be very easy to identify a

user by inputting the exact tweet plus a timestamp. In 2017, there have been

numerous circumstances of people being doxed1 from their tweets that led to their

eventually firing. Others, such as ESPN’s Jemele Hill, have been suspended for views

expressed on her Twitter account. We do not believe in bringing harm to a user or risk

bringing harm to them in any way. Therefore, we will not be publishing any

individual tweets. We will still collect the contents of each tweet for our study, but the

individual tweets themselves will not be published. The reason that we need to collect

the information of the tweets is to perform text mining on each tweet’s content for our

algorithm. We will protect the anonymity of users in this study by not publishing

personally identifying or account identifying information.

There is also the ethical dilemma of sharing the results [19]. We must answer the

question of what is the ethical process of informing Twitter users that we believe an

account is a bot. Because bot accounts that do not identify themselves are in violation

of the Twitter TOS (Terms of Service), it is acceptable to identify them as bots. The

algorithm that we create will only give a percent certainty, so it is possible that we

flag an account as a malevolent bot, but if that flagged account is a person and not a

bot, then we will have created a new ethical concern. The best solution to this ethical

problem is to provide tools for users to be able to identify bot accounts themselves

and block the bot content or report the account to Twitter if they choose.

8 Conclusions

The ruleset that we have proposed works best against bots that are the fake follower

type. This can be improved even further by adding more variables about users activity

patterns and the contents of the tweets. A large dataset is required to adequately

analyze the tweets.

The Russian tweets may be among the less sophisticated as they were discovered.

More variables are required in order to potentially find a more sophisticated bot.

With the ability to discriminate between real user accounts and malicious Twitter

bots, our model could be applied to stop the spread of false information. According to

a survey conducted by Zignal Labs which received responses by over 2,000 adults

located the US, 86% of Americans do not always fact check articles that they have

read via a link on social media [24]. Additionally, 27% of the respondents in the

survey admit they do not fact-check articles they themselves share [24]. Intercepting

in real time with the credibility of the information or opinion will decrease the chance

the user spreads false information.

1 Having one’s personal information or documents leaked online

18

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

Out theoretical end goal is a way for Twitter users to identify whether an account is

a bot or not with as little extra work as possible to make it more likely that our

information gets used. Our end goal is an Internet browser extension that allow users

to identify if an account is a bot without leaving the website. This information will be

relayed by hovering over an account name with your mouse. When done so, our

proposed extension will display a bubble containing our model’s conclusion on

whether the account is a bot. Our idea is that if users understand that information is

from a source that they do not know and is from a bot that they will not blindly spread

it without more research. In this case information is not only in the form of links to

articles. It could also pertain to eye-witness claims and information from unknown

reporters. As Ben Popkin from NBC News stated, many of the Russian bot accounts

were ‘impersonating Americans’ [23]. They were also tweeting during large events

such as debates, and terrorist attacks. Possibly to influence people’s opinions on

topics. By having a real time tool at people’s fingertips, we can prevent unwelcome

influence.

According to Sinan Aral and his team “it took the truth six times as long as

falsehoods to reach 1,500 people’ [25] The danger of one person reading incorrect

media is that it can easily be spread to others. Therefore, we have developed a method

to let people fact check the validity of Twitter accounts without having to leave the

website or their Twitter app on their smartphone. Having this chrome extension use

our ruleset to identify bots in real-time is an ideal implementation of the ruleset in

future work.

References

1. A. Bessi and E. Ferrara, “Social bots distort the 2016 U.S. Presidential election online

discussion,” First Monday, vol. 21, no.11, Nov 2016.

2. Alex Hai Wang. Detecting Spam Bots in Online Social Networking Sites: A Machine

Learning Approach. Sara Foresti; Sushil Jajodia. 24th Annual IFIP WG 11.3 Working

Conference on Data and Applications Security and Privacy (DBSEC), Jun 2010, Rome,

Italy. Springer, Lecture Notes in Computer Science, LNCS-6166, pp.335-342, 2010, Data

and Applications Security and Privacy XXIV. <10.1007/978-3-642-13739-6_25>. <hal-

01056675>

3. Botometer, https://botometer.iuni.iu.edu/#!/.

4. Cresi, S., Di Pietro, R., Petrocchi, M., Spognardi, A., & Tesconi, M. (2015). Fame for sale:

Efficient detection of fake Twitter followers. Decision Support Systems, 80, 56-71.

5. A. Java, X. Song, T. Finin, and B. Tseng, “Why We Twitter: Understanding Microblogging

Usage and Communities, “Proc. Ninth WebKDD and First SNA-KDD Workshop Web

Mining and Social Network Analysis, 2007, 2007.

6. Shaffer, Kris. “Spot a Bot: Identifying Automation and Disinformation on Social Media.”

Medium, Data for Democracy, 5 June 2017, medium.com/data-for-democracy/spot-a-bot-

identifying-automation-and-disinformation-on-social-media-2966ad93a203.

7. Subrahmanian, V. S., Amos Azaria, Skylar Durst, Vadim Kagan, Aram Galstyan, Kristina

Lerman, Linhong Zhu, Emilio Ferrara, Alessandro Flammini and Filippo Menczer. “The

DARPA Twitter Bot Challenge.” Computer 49 (2016): 38-46.

8. S. Yardi, D. Romero, G. Shoenbeck, and D. Boyd, “Detecting Spam in a Twitter Network,”

First Monday, vol. 15, no.1, Jan 2010.

9. The Fake Project, Dataset, http://mib.projects.itt.cnr.it/dataset.html.

19

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

https://botometer.iuni.iu.edu/
http://mib.projects.itt.cnr.it/dataset.html

10. Twitter. Number of monthly active Twitter users in the United States from 1st quarter 2010

to 3rd quarter 2017 (in million). In Statista – The Statistics Portal. Retrieved October 23,

2017, from https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-

united-states/.

11. Twitter. Number of monthly active Twitter users Worldwide from 1st quarter 2010 to 3rd

quarter 2017 (in million). In Statista – The Statistics Portal. Retrieved October 23, 2017,

from https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/.

12. Twitter. (2017). Twitter Announces Third Quarter 2017 Results. Retrieved from

http://files.shareholder.com/downloads/AMDA-2F526X/5465364539x0x961127/658476E7-

9D8B-4B17-BE5D-B77034D21FCE/TWTR_Q3_17_Earnings_Press_Release.pdf.

13. Varol, Onur, et al. “Online Human-Bot Interactions: Detection, Estimation, and

Characterization.” Online Human-Bot Interactions: Detection, Estimation, and

Characterization, 9 Mar. 2017, arxiv.org/abs/1703.03107v1.

14. Zeifman, Igal. “Bot Traffic Report 2016. “Incapsula.com, Imperva,

www.incapsula.com/blog/bot-traffic-report-2016.html.

15. Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro Flammini.

2016. The rise of social bots. Commun. ACM 59, 7 (June 2016), 96-104. DOI:

https://doi.org/10.1145/2818717

16. Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: sentiment

classification using machine learning techniques. In Proceedings of the ACL-02 conference on

Empirical methods in natural language processing - Volume 10 (EMNLP '02), Vol. 10.

Association for Computational Linguistics, Stroudsburg, PA, USA, 79-86. DOI:

https://doi.org/10.3115/1118693.1118704

17. Helena Webb, Marina Jirotka, Bernd Carsten Stahl, William Housley, Adam Edwards,

Matthew Williams, Rob Procter, Omer Rana, and Pete Burnap. 2017. The Ethical Challenges of

Publishing Twitter Data for Research Dissemination. In Proceedings of the 2017 ACM on Web

Science Conference (WebSci '17). ACM, New York, NY, USA, 339-348. DOI:

https://doi.org/10.1145/3091478.3091489

18. Mozetič I, Grčar M, Smailović J (2016) Multilingual Twitter Sentiment Classification: The

Role of Human Annotators. PLoS ONE 11(5): e0155036.

https://doi.org/10.1371/journal.pone.0155036

19. Matthew L Williams, Pete Burnap, Luke Sloan. May 26, 2017. Towards an Ethical

Framework for Publishing Twitter Data in Social Research: Taking into Account Users’ Views,

Online Context and Algorithmic Estimation. In Sociology. Vol 51, Issue 6, pp. 1149-1168.

DOI: https://doi.org/10.1177/0038038517708140.

20. Hutto, C.J. and Eric Gilbert. VADER: A Parsimonious Rule-based Model for Sentiment

Analysis of Social Media Text. http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf.

21. Chu, Zi, et al. “Detecting Automation of Twitter Accounts: Are You a Human, Bot, or

Cyborg?” IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 6, 2012, pp.

811-824., doi:10.1109/tdsc.2012.75.

22. Popken, B. (2018, February 14). Twitter deleted Russian troll tweets. So we published more

than 200,000 of them. Retrieved from https://www.nbcnews.com/tech/social-media/now-

available-more-200-000-deleted-russian-troll-tweets-n844731

23. Larson, Eric. Logistic Regression, SVMs, and Gradient Optimization.

https://github.com/eclarson/DataMiningNotebooks/blob/master/04.%20Logits%20and%20SV

M.ipynb

24. Brown, E. (2017, May 10). 9 out of 10 Americans don’t fact-check information they read

on social media. Retrieved from http://www.zdnet.com/article/nine-out-of-ten-americans-dont-

fact-check-information-they-read-on-social-media/

25. Fox, M. (2018, March 8). Want something to go viral? Make it fake news. Retreived from

https://www.nbcnews.com/health/health-news/fake-news-lies-spread-faster-social-media-truth-

does-n854896

20

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-united-states/
https://www.statista.com/statistics/274564/monthly-active-twitter-users-in-the-united-states/
https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
http://files.shareholder.com/downloads/AMDA-2F526X/5465364539x0x961127/658476E7-9D8B-4B17-BE5D-B77034D21FCE/TWTR_Q3_17_Earnings_Press_Release.pdf
http://files.shareholder.com/downloads/AMDA-2F526X/5465364539x0x961127/658476E7-9D8B-4B17-BE5D-B77034D21FCE/TWTR_Q3_17_Earnings_Press_Release.pdf
http://www.incapsula.com/blog/bot-traffic-report-2016.html
https://doi.org/10.1145/2818717
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.1145/3091478.3091489
https://doi.org/10.1371/journal.pone.0155036
https://doi.org/10.1177/0038038517708140
http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://www.nbcnews.com/tech/social-media/now-available-more-200-000-deleted-russian-troll-tweets-n844731
https://github.com/eclarson/DataMiningNotebooks/blob/master/04.%20Logits%20and%20SVM.ipynb
https://github.com/eclarson/DataMiningNotebooks/blob/master/04.%20Logits%20and%20SVM.ipynb
http://www.zdnet.com/article/nine-out-of-ten-americans-dont-fact-check-information-they-read-on-social-media/
http://www.zdnet.com/article/nine-out-of-ten-americans-dont-fact-check-information-they-read-on-social-media/

Appendix: Code

coding: utf-8

In[3]:

import pandas as pd

import numpy as np

import os

import Levenshtein as Lev

from sklearn.utils import shuffle

import datetime as dt

import editdistance

In[4]:

Russian Data Set

rus_tweets = pd.read_csv('/Users/Phillip/Downloads/RussianData/tweets.csv',

na_filter=False)

rus_tweets.info()

In[5]:

samp_rus_tweets = rus_tweets[0:10]

samp_rus_tweets = samp_rus_tweets['text']

samp_rus_tweets = samp_rus_tweets.str.replace(' ','')

samp_rus_tweets = samp_rus_tweets.str.replace('RT@','')

#samp_rus_tweets = samp_rus_tweets.sub,'')

#samp_rus_tweets[samp_rus_tweets.find("@")+1:samp_rus_tweets.find(":")]

21

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

samp_rus_tweets

In[6]:

from itertools import product

dist = np.empty(samp_rus_tweets.shape[0]**2, dtype=int)

for i, x in enumerate(product(samp_rus_tweets, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, samp_rus_tweets.shape[0]))

#dist_df

print(dist_df)

In[7]:

mean_dist = dist_df.mean()

mean_dist.mean()

In[61]:

rus_tweets_sorted = rus_tweets.sort_values(by=['user_key'])

rus_tweets_sorted = rus_tweets_sorted['text']

rus_tweets_sorted = rus_tweets_sorted.str.replace(' ','')

rus_tweets_sorted = rus_tweets_sorted.str.replace('RT@','')

rus_tweets_sorted1 = rus_tweets_sorted[4171:4207]

rus_tweets_sorted2 = rus_tweets_sorted[4208:4224]

rus_tweets_sorted3 = rus_tweets_sorted[4225:4289]

rus_tweets_sorted4 = rus_tweets_sorted[4290:4327]

rus_tweets_sorted5 = rus_tweets_sorted[4328:4340]

rus_tweets_sorted6 = rus_tweets_sorted[4341:4380]

#rus_tweets_sorted7 = rus_tweets_sorted[4381:4381]

rus_tweets_sorted8 = rus_tweets_sorted[4382:4432]

rus_tweets_sorted9 = rus_tweets_sorted[4433:4434]

rus_tweets_sorted10 = rus_tweets_sorted[4435:4487]

rus_tweets_sorted11 = rus_tweets_sorted[4488:4892]

rus_tweets_sorted12 = rus_tweets_sorted[4893:4908]

rus_tweets_sorted13 = rus_tweets_sorted[4909:4932]

22

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

rus_tweets_sorted14 = rus_tweets_sorted[4933:4941]

rus_tweets_sorted15 = rus_tweets_sorted[4942:5015]

rus_tweets_sorted16a = rus_tweets_sorted[5016:9284]

rus_tweets_sorted16b = rus_tweets_sorted[9285:14284]

#rus_tweets_sorted17 = rus_tweets_sorted[14285:14285]

rus_tweets_sorted18 = rus_tweets_sorted[14286:14317]

#rus_tweets_sorted19 = rus_tweets_sorted[14318:14318]

rus_tweets_sorted20 = rus_tweets_sorted[14319:14469]

rus_tweets_sorted21 = rus_tweets_sorted[14470:15814]

rus_tweets_sorted22 = rus_tweets_sorted[15815:15899]

rus_tweets_sorted23 = rus_tweets_sorted[15900:15902]

rus_tweets_sorted24 = rus_tweets_sorted[15903:15939]

rus_tweets_sorted25 = rus_tweets_sorted[15940:15946]

rus_tweets_sorted26 = rus_tweets_sorted[15940:15946]

rus_tweets_sorted27 = rus_tweets_sorted[15940:15946]

rus_tweets_sorted28 = rus_tweets_sorted[15940:15946]

In[31]:

find Lev distance for the user #1

dist = np.empty(rus_tweets_sorted1.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted1, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted1.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[32]:

find Lev distance for the user #2

dist = np.empty(rus_tweets_sorted2.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted2, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted2.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[33]:

23

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

find Lev distance for the user #3

dist = np.empty(rus_tweets_sorted3.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted3, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted3.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[34]:

find Lev distance for the user #4

dist = np.empty(rus_tweets_sorted4.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted4, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted4.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[35]:

find Lev distance for the user #5

dist = np.empty(rus_tweets_sorted5.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted5, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted5.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[36]:

find Lev distance for the user #6

dist = np.empty(rus_tweets_sorted6.shape[0]**2, dtype=int)

24

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

for i, x in enumerate(product(rus_tweets_sorted6, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted6.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[37]:

find Lev distance for the user #7

dist = np.empty(rus_tweets_sorted7.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted7, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted7.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[38]:

find Lev distance for the user 8

dist = np.empty(rus_tweets_sorted8.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted8, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted8.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[39]:

find Lev distance for the user 9

dist = np.empty(rus_tweets_sorted9.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted9, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted9.shape[0]))

mean_dist = dist_df.mean()

25

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

mean_dist.mean()

In[40]:

find Lev distance for the user 10

dist = np.empty(rus_tweets_sorted10.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted10, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted10.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[41]:

find Lev distance for the user 11

dist = np.empty(rus_tweets_sorted11.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted11, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted11.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[42]:

find Lev distance for the user 12

dist = np.empty(rus_tweets_sorted12.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted12, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted12.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[43]:

26

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

find Lev distance for the user13

dist = np.empty(rus_tweets_sorted13.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted13, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted13.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[44]:

find Lev distance for the user14

dist = np.empty(rus_tweets_sorted14.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted14, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted14.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[45]:

find Lev distance for the user15

dist = np.empty(rus_tweets_sorted15.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted15, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted15.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[58]:

find Lev distance for the user16a

dist = np.empty(rus_tweets_sorted16a.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted16a, repeat=2)):

27

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted16a.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[59]:

find Lev distance for the user16b

dist = np.empty(rus_tweets_sorted16b.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted16b, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted16b.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[60]:

Lev for 16

(98.90660460926716 + 99.0721426541758)/2

In[47]:

find Lev distance for the user17

dist = np.empty(rus_tweets_sorted17.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted17, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted17.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[48]:

find Lev distance for the user18

28

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

dist = np.empty(rus_tweets_sorted18.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted18, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted18.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[49]:

find Lev distance for the user19

dist = np.empty(rus_tweets_sorted19.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted19, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted19.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[50]:

find Lev distance for the user20

dist = np.empty(rus_tweets_sorted20.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted20, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted20.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[51]:

find Lev distance for the user21

dist = np.empty(rus_tweets_sorted21.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted21, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted21.shape[0]))

29

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

mean_dist = dist_df.mean()

mean_dist.mean()

In[52]:

find Lev distance for the user22

dist = np.empty(rus_tweets_sorted22.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted22, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted22.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[53]:

find Lev distance for the user23

dist = np.empty(rus_tweets_sorted23.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted23, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted23.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[54]:

find Lev distance for the user24

dist = np.empty(rus_tweets_sorted24.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted24, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted24.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[55]:

30

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

find Lev distance for the user25

dist = np.empty(rus_tweets_sorted25.shape[0]**2, dtype=int)

for i, x in enumerate(product(rus_tweets_sorted25, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted25.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[128]:

Real Tweets Data Set

real_tweets = pd.read_csv('/Users/Phillip/Downloads/cresci-

2017/datasets_full.csv/genuine_accounts.csv/tweets.csv', na_filter=False)

real_tweets['user_id'] = real_tweets['user_id'].str.replace(' ','')

real_tweets.fillna('')

real_tweets.info()

In[90]:

real_tweets['user_id'] = real_tweets['user_id'].astype(str).astype(int)

real_tweets['user_id'].tail()

#real_tweets.info()

real_tweets_sorted = real_tweets.sort_values(by=['user_id'])

real_tweets_sorted = real_tweets_sorted['text']

real_tweets_sorted = real_tweets_sorted.str.replace(' ','')

real_tweets_sorted = real_tweets_sorted.str.replace('RT@','')

In[130]:

In[93]:

31

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

real_tweets_sorted.head()

In[94]:

real_tweets_sorted1 = real_tweets_sorted[981668:982560]

real_tweets_sorted2 = real_tweets_sorted[982561:985677]

real_tweets_sorted3 = real_tweets_sorted[985678:988132]

real_tweets_sorted4 = real_tweets_sorted[988133:991368]

real_tweets_sorted5 = real_tweets_sorted[991369:994578]

real_tweets_sorted6 = real_tweets_sorted[994579:997773]

real_tweets_sorted7 = real_tweets_sorted[997774:1000994]

real_tweets_sorted8 = real_tweets_sorted[1000995:1004171]

real_tweets_sorted9 = real_tweets_sorted[1004172:1007390]

real_tweets_sorted10 = real_tweets_sorted[1007391:1010510]

real_tweets_sorted11 = real_tweets_sorted[1010511:1013599]

real_tweets_sorted12 = real_tweets_sorted[1013600:1013941]

real_tweets_sorted13 = real_tweets_sorted[1013942:1017137]

real_tweets_sorted14 = real_tweets_sorted[1017138:1019436]

real_tweets_sorted15 = real_tweets_sorted[1019437:1022622]

real_tweets_sorted16 = real_tweets_sorted[1022623:1025845]

real_tweets_sorted17 = real_tweets_sorted[1025846:1029038]

real_tweets_sorted18 = real_tweets_sorted[1029039:1032277]

real_tweets_sorted19 = real_tweets_sorted[1032278:1035441]

real_tweets_sorted20 = real_tweets_sorted[1035442:1036606]

real_tweets_sorted21 = real_tweets_sorted[1036607:1039781]

real_tweets_sorted22 = real_tweets_sorted[1039782:1042953]

real_tweets_sorted23 = real_tweets_sorted[1042954:1045336]

real_tweets_sorted24 = real_tweets_sorted[1045337:1045417]

real_tweets_sorted25 = real_tweets_sorted[1045418:1048574]

In[95]:

find Lev distance for the user #1

dist = np.empty(real_tweets_sorted1.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted1, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted1.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

32

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

In[96]:

find Lev distance for the user #2

dist = np.empty(real_tweets_sorted2.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted2, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted2.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[97]:

find Lev distance for the user #3

dist = np.empty(real_tweets_sorted3.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted3, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted3.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[121]:

find Lev distance for the user #4

dist = np.empty(real_tweets_sorted4.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted4, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted4.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

33

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

In[99]:

find Lev distance for the user #5

dist = np.empty(real_tweets_sorted5.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted5, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted5.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[100]:

find Lev distance for the user #6

dist = np.empty(real_tweets_sorted6.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted6, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted6.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[101]:

find Lev distance for the user #7

dist = np.empty(real_tweets_sorted7.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted7, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted7.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[102]:

34

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

find Lev distance for the user #8

dist = np.empty(real_tweets_sorted8.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted8, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted8.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[103]:

find Lev distance for the user #9

dist = np.empty(real_tweets_sorted9.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted9, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted9.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[104]:

find Lev distance for the user #10

dist = np.empty(real_tweets_sorted10.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted10, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted10.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[105]:

find Lev distance for the user #11

35

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

dist = np.empty(real_tweets_sorted11.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted11, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted11.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[106]:

find Lev distance for the user #12

dist = np.empty(real_tweets_sorted12.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted12, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted12.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[107]:

find Lev distance for the user #13

dist = np.empty(real_tweets_sorted13.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted13, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted13.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[108]:

find Lev distance for the user #13

dist = np.empty(real_tweets_sorted13.shape[0]**2, dtype=int)

36

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

for i, x in enumerate(product(real_tweets_sorted13, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted13.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[109]:

find Lev distance for the user #14

dist = np.empty(real_tweets_sorted14.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted14, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted14.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[110]:

find Lev distance for the user #15

dist = np.empty(real_tweets_sorted15.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted15, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted15.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[111]:

find Lev distance for the user #16

dist = np.empty(real_tweets_sorted16.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted16, repeat=2)):

 dist[i] = editdistance.eval(*x)

37

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted16.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[112]:

find Lev distance for the user #17

dist = np.empty(real_tweets_sorted17.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted17, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted17.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[113]:

find Lev distance for the user #18

dist = np.empty(real_tweets_sorted18.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted18, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted18.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[114]:

find Lev distance for the user #19

dist = np.empty(real_tweets_sorted19.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted19, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted19.shape[0]))

38

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

mean_dist = dist_df.mean()

mean_dist.mean()

In[115]:

find Lev distance for the user #20

dist = np.empty(real_tweets_sorted20.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted20, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted20.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[116]:

find Lev distance for the user #21

dist = np.empty(real_tweets_sorted21.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted21, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted21.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[117]:

find Lev distance for the user #22

dist = np.empty(real_tweets_sorted22.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted22, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted22.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

39

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

In[118]:

find Lev distance for the user #23

dist = np.empty(real_tweets_sorted23.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted23, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted23.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[119]:

find Lev distance for the user #24

dist = np.empty(real_tweets_sorted24.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted24, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted24.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

In[120]:

find Lev distance for the user #25

dist = np.empty(real_tweets_sorted25.shape[0]**2, dtype=int)

for i, x in enumerate(product(real_tweets_sorted25, repeat=2)):

 dist[i] = editdistance.eval(*x)

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted25.shape[0]))

mean_dist = dist_df.mean()

mean_dist.mean()

40

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

In[123]:

os.chdir("/Users/Phillip/Downloads/cresci-2017/datasets_full.csv/")

os.getcwd()

os.listdir()

In[124]:

need genuine accounts for support vector machining

real = pd.read_csv('genuine_accounts.csv/users.csv')

real = real.fillna('')

real.info()

In[126]:

real = real.sort_values(by=['id'])

real.tail()

In[75]:

df = pd.read_csv('social_spambots_2.csv/tweets.csv')

df = df.fillna('')

df.info()

In[78]:

df = pd.read_csv('social_spambots_2.csv/tweets.csv')

df = df.fillna('')

#df['default_profile'].isnull().values.sum()

need genuine accounts for support vector machining

real = pd.read_csv('genuine_accounts.csv/tweets.csv')

real = real.fillna('')

temp. subset for testing SVM

41

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

real = real[1:1000]

fake followers

fake_followers = pd.read_csv('fake_followers.csv/tweets.csv')

fake_followers.fillna('')

traditional spambots

trad_spam_1 = pd.read_csv('social_spambots_1.csv/tweets.csv')

trad_spam_1 = trad_spam_1.fillna('')

social spambots

social_spam_1 = pd.read_csv('social_spambots_1.csv/tweets.csv')

social_spam_1 = social_spam_1.fillna('')

social_spam_2 = pd.read_csv('social_spambots_2.csv/tweets.csv')

social_spam_2 = social_spam_2.fillna('')

social_spam_3 = pd.read_csv('social_spambots_3.csv/tweets.csv')

social_spam_3 = social_spam_3.fillna('')

rus_tweets.fillna('')

rus_tweets = rus_tweets.replace(np.nan, '', regex=True)

column detailing if they are a bot

will be deleted later for SVM

real['knownbot'] = 0

df['knownbot'] = 1

fake_followers['knownbot'] = 1

trad_spam_1['knownbot'] = 1

social_spam_1['knownbot'] = 1

social_spam_2['knownbot'] = 1

social_spam_3['knownbot'] = 1

rus_tweets['knownbot'] = 1

#len(real['default_profile'])

In[38]:

42

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

combine dataframe. append dataframes.

combine all social spambots

#all_trad_spam = pd.concat([trad_spam_1,trad_spam_2,trad_spam_3])

#all_social_spambots = pd.concat([social_spam_1,social_spam_2,social_spam_3])

#all_bots = pd.concat([all_social_spambots,fake_followers])

df = pd.concat([df,real])

#df = pd.concat([real, rus_users])

#len(df['default_profile'])

df = shuffle(df)

df.info()

In[]:

Average number of Tweets

ss1 = social_spam_1['num_hashtags'].mean()

ss2 = social_spam_2['num_hashtags'].mean()

ss3 = social_spam_3['num_hashtags'].mean()

ts1 = trad_spam_1['num_hashtags'].mean()

#ts2 = trad_spam_2['num_hashtags'].mean()

#ts3 = trad_spam_3['num_hashtags'].mean()

r1 = real['num_hashtags'].mean()

f1 = fake_followers['num_hashtags'].mean()

#rus1 = rus_tweets['num_hashtags'].mean()

sets = [ss1,ss2,ss3,ts1,ts2,ts3,r1,f1]

xlabel = ('Social 1', 'Social 2', 'Social 3', 'Traditional 1', 'Real Accounts', 'Fake

Followers', 'Russian Bots')

xlabel = ('Social 1', 'Social 2', 'Social 3', 'Traditional 1', 'Real Accounts', 'Fake

Followers')

ypos = np.arange(len(sets))

amount = [ss1,ss2,ss3,ts1,r1,f1]

plt.bar(xlabel, sets, align='center', alpha=0.5)

plt.xticks(ypos,xlabel,rotation=30)

plt.ylabel('Average Number of Favorites')

43

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

plt.title('Average Number of Favorites Per Account Per Dataset')

plt.show()

In[]:

convert timestamp to datetime format

month/day/year hour:minute:second AM

df['timestamp'] = df['timestamp'].apply(lambda x:

dt.datetime.strptime(x,'%b%d%Y:%H:%M:%S.%f'))

df['Mycol'] = df['Mycol'].apply(lambda x:

dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f'))

df.info()

In[]:

create empty DF and add id

score = pd.DataFrame()

score['id'] = df['id']

In[]:

#function that will be used for scoring

is language english

def scoring (row):

if row['lang'] == 'en':

return 1

else:

return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

44

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

assigns function output to new df

score['lang-en'] = df.apply (lambda row: scoring (row),axis=1)

coding: utf-8

In[396]:

import pandas as pd

import numpy as np

import os

import matplotlib.pyplot as plt

import Levenshtein as Lev

from fuzzywuzzy import fuzz

from fuzzywuzzy import process

from sklearn.utils import shuffle

import datetime as dt

from mlxtend.plotting import plot_decision_regions

from itertools import product

In[397]:

Russian Data Set

rus_users = pd.read_csv('/Users/Phillip/Downloads/RussianData/users.csv',

na_filter=False)

rus_users.fillna('')

#rus_users.rename(columns={})

#rus_users['knownbot'] = 1

#list(rus_users)

rus_users[['id','followers_count','statuses_count','favourites_count','friends_count']] =

rus_users[['id','followers_count','statuses_count','favourites_count','friends_count']].ap

ply(pd.to_numeric)

rus_users['id'] = rus_users['id'].fillna(0).astype(int)

rus_users['followers_count'] = rus_users['followers_count'].fillna(0).astype(int)

rus_users['statuses_count'] = rus_users['statuses_count'].fillna(0).astype(int)

rus_users['favourites_count'] = rus_users['favourites_count'].fillna(0).astype(int)

rus_users['friends_count'] = rus_users['friends_count'].fillna(0).astype(int)

#rus_users = rus_users.replace(np.nan, '', regex=True)

#rus_users[('followers_count','statuses_count','favourites_count','friends_count')].appl

ymap(int)

rus_users.fillna('')

45

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

#rus_users = rus_users.replace(np.nan, '', regex=True)

#int(rus_users['followers_count'])

#rus_users.shape

rus_users.info()

In[398]:

os.chdir("/Users/Phillip/Downloads/cresci-2017/datasets_full.csv/")

os.getcwd()

os.listdir()

In[399]:

df = pd.read_csv('social_spambots_1.csv/users.csv')

df.info()

In[400]:

df = df.fillna('')

df.ix[:5,:20]

In[401]:

list(df)

df.info()

In[402]:

df['default_profile'].isnull().values.sum()

len(df['default_profile'])

df.head()

In[403]:

46

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

need genuine accounts for support vector machining

real = pd.read_csv('genuine_accounts.csv/users.csv')

real = real.fillna('')

temp. subset for testing SVM

real = real[1:1000]

fake followers

fake_followers = pd.read_csv('fake_followers.csv/users.csv')

fake_followers.fillna('')

traditional spambots

trad_spam_1 = pd.read_csv('traditional_spambots_1.csv/users.csv')

trad_spam_2 = pd.read_csv('traditional_spambots_2.csv/users.csv')

trad_spam_3 = pd.read_csv('traditional_spambots_3.csv/users.csv')

#trad_spam_4 = pd.read_csv('social_spambots_4.csv/users.csv')

trad_spam_1 = trad_spam_1.fillna('')

trad_spam_2 = trad_spam_2.fillna('')

trad_spam_3 = trad_spam_3.fillna('')

#trad_spam_4 = trad_spam_4.fillna('')

social spambots

social_spam_1 = pd.read_csv('social_spambots_1.csv/users.csv')

social_spam_1 = social_spam_1.fillna('')

social_spam_2 = pd.read_csv('social_spambots_2.csv/users.csv')

social_spam_2 = social_spam_2.fillna('')

social_spam_3 = pd.read_csv('social_spambots_3.csv/users.csv')

social_spam_3 = social_spam_3.fillna('')

rus_users.fillna('')

rus_users = rus_users.replace(np.nan, '', regex=True)

column detailing if they are a bot

will be deleted later for SVM

real['knownbot'] = 0

df['knownbot'] = 1

fake_followers['knownbot'] = 1

trad_spam_1['knownbot'] = 1

47

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

trad_spam_2['knownbot'] = 1

trad_spam_3['knownbot'] = 1

#trad_spam_4['knownbot'] = 1

social_spam_1['knownbot'] = 1

social_spam_2['knownbot'] = 1

social_spam_3['knownbot'] = 1

rus_users['knownbot'] = 1

len(real['default_profile'])

In[404]:

Number of Twitter Accounts Per Dataset

ss1 = len(social_spam_1)

ss2 = len(social_spam_2)

ss3 = len(social_spam_3)

ts1 = len(trad_spam_1)

ts2 = len(trad_spam_2)

ts3 = len(trad_spam_3)

r1 = len(real)

f1 = len(fake_followers)

rus1 = len(rus_users)

Average number of followers

ss1 = social_spam_1['followers_count'].mean()

ss2 = social_spam_2['followers_count'].mean()

ss3 = social_spam_3['followers_count'].mean()

ts1 = trad_spam_1['followers_count'].mean()

ts2 = trad_spam_2['followers_count'].mean()

ts3 = trad_spam_3['followers_count'].mean()

r1 = real['followers_count'].mean()

f1 = fake_followers['followers_count'].mean()

rus1 = rus_users['followers_count'].mean()

Average number of friends

ss1 = social_spam_1['friends_count'].mean()

ss2 = social_spam_2['friends_count'].mean()

ss3 = social_spam_3['friends_count'].mean()

ts1 = trad_spam_1['friends_count'].mean()

ts2 = trad_spam_2['friends_count'].mean()

ts3 = trad_spam_3['friends_count'].mean()

r1 = real['friends_count'].mean()

48

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

f1 = fake_followers['friends_count'].mean()

rus1 = rus_users['friends_count'].mean()

Average number of Tweets

ss1 = social_spam_1['statuses_count'].mean()

ss2 = social_spam_2['statuses_count'].mean()

ss3 = social_spam_3['statuses_count'].mean()

ts1 = trad_spam_1['statuses_count'].mean()

ts2 = trad_spam_2['statuses_count'].mean()

ts3 = trad_spam_3['statuses_count'].mean()

r1 = real['statuses_count'].mean()

f1 = fake_followers['statuses_count'].mean()

rus1 = rus_users['statuses_count'].mean()

Average number of Favorites Per Dataset

ss1 = social_spam_1['favourites_count'].mean()

ss2 = social_spam_2['favourites_count'].mean()

ss3 = social_spam_3['favourites_count'].mean()

ts1 = trad_spam_1['favourites_count'].mean()

ts2 = trad_spam_2['favourites_count'].mean()

ts3 = trad_spam_3['favourites_count'].mean()

r1 = real['favourites_count'].mean()

f1 = fake_followers['favourites_count'].mean()

rus1 = rus_users['favourites_count'].mean()

sets = [ss1,ss2,ss3,ts1,ts2,ts3,r1,f1,rus1]

xlabel = ('Social 1', 'Social 2', 'Social 3', 'Traditional 1', 'Traditional 2', 'Traditional 3',

'Real Accounts', 'Fake Followers', 'Russian Bots')

ypos = np.arange(len(sets))

amount = [ss1,ss2,ss3,ts1,ts2,ts3,r1,f1,rus1]

plt.bar(xlabel, sets, align='center', alpha=0.5)

plt.xticks(ypos,xlabel,rotation=30)

plt.ylabel('Average Number of Followers')

plt.title('Average Number of Followers Per Account Per Dataset')

plt.ylabel('Number of Twitter Accounts')

plt.title(' Number of Twitter Accounts Per Dataset')

plt.show()

print(sets)

49

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

In[405]:

combine dataframe. append dataframes.

combine all social spambots

all_trad_spam = pd.concat([trad_spam_1,trad_spam_2,trad_spam_3])

all_social_spambots = pd.concat([social_spam_1,social_spam_2,social_spam_3])

all_bots = pd.concat([all_trad_spam,all_social_spambots,fake_followers])

df = pd.concat([df,real])

df = pd.concat([real, all_bots])

len(df['default_profile'])

df.head()

In[406]:

Prepare of Levenshtein Distance

LevD_Rus =

[87.22685185185186,75.6484375,93.87158203125,95.54127100073046,84.86111111

11111,88.12097304404995,85.50719999999995,0.0,93.0051775147929,92.93727330

653853,92.25777777777778,87.29300567107751,78.875,88.66128729592792,98.989

37363172149,85.52549427679502,88.27911111111112,92.20204768105165,94.7046

4852607702,34.5,87.5246913580247,76.22222222222223]

LevD_Real =

[65.56188793259464,68.06269743639605,80.99069695768078,35.81521735079752,

41.59524071487558,54.80695468844404,69.17062343273791,77.40079028640484,6

7.02438312151091,69.26917965276283,55.803792341740724,59.65946285291664,7

0.02652325009018,74.53508708143696,82.96344570432927,72.94090538318754,75

.49669423401855,86.23952096036828,59.65265730087915,57.51488084694314,56.

52436582043217,59.63556497551856,77.69237444844183,87.1303125,81.64039747

253511]

sort real dataset

real = real.sort_values(by=['screen_name'])

real_Lev = real.tail(25)

real_Lev['LevD'] = LevD_Real

50

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

sort Russian bots dataset

rus_users = rus_users.sort_values(by=['screen_name'])

rus_users_Lev = rus_users.iloc[3:28]

rus_users_Lev = rus_users_Lev.drop(rus_users_Lev.index[18])

rus_users_Lev = rus_users_Lev.drop(rus_users_Lev.index[16])

rus_users_Lev = rus_users_Lev.drop(rus_users_Lev.index[6])

rus_users_Lev['LevD'] = LevD_Rus

df = pd.concat([real_Lev, rus_users_Lev])

real_Lev['LevD'].describe()

In[407]:

df = shuffle(df)

df.head()

In[408]:

#function that will be used for scoring

is language english

def scoring (row):

 if row['lang'] == 'en':

 return 1

 else:

 return 0

In[409]:

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

51

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

In[410]:

create empty DF and add id

score = pd.DataFrame()

score['id'] = df['id']

assigns function output to new df

score['lang-en'] = df.apply (lambda row: scoring (row),axis=1)

In[411]:

score['id']

In[412]:

has profile image.

change from using profile_banner_url

def scoring (row):

 if row['profile_image_url'] == '':

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['profile_pic'] = df.apply (lambda row: scoring (row),axis=1)

score['profile_pic'].tail()

In[413]:

52

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

has screen name.

change from screen_name to name. screen_name = @handle. name: can be

changed, not required.

def scoring (row):

 if row['name'] == '':

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['has_screen_name'] = df.apply (lambda row: scoring (row),axis=1)

score['has_screen_name'].head()

In[414]:

has 30 followers

def scoring (row):

 if row['followers_count'] < 30:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['30followers'] = df.apply (lambda row: scoring (row),axis=1)

53

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

score['30followers'].head()

In[415]:

is geolocalized

def scoring (row):

 if row['geo_enabled'] == '':

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['geoloc'] = df.apply (lambda row: scoring (row),axis=1)

score['geoloc'].head()

In[416]:

profile banner contains a link ('http') from profile_banner_url

change to if the description contains

def scoring (row):

 if row['profile_banner_url'] == '':

 return 0

 else:

 return 1

def scoring (row):

if 'http' not in row['description']:

return 0

elif row['description'] == '':

return 1

54

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

else:

return 1

df['description'] = df['description']

def scoring (row):

if row['description'] == ('http'):

return 0

else:

return 1

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['banner_link'] = df.apply (lambda row: scoring (row),axis=1)

score['banner_link'].head()

In[417]:

has done 50 tweets

def scoring (row):

 if row['statuses_count'] > 50:

 return 0

 else:

 return 1

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

55

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

score['50tweets'] = df.apply (lambda row: scoring (row),axis=1)

score['50tweets'].head()

In[418]:

2* num followers >= # of friends

def scoring (row):

 if 2*row['followers_count'] >= row['friends_count']:

 return 0

 else:

 return 1

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['twice_num_followers'] = df.apply (lambda row: scoring (row),axis=1)

score['twice_num_followers'].head()

In[419]:

does not have 1000s of friends, spambot

def scoring (row):

 if row['friends_count'] > 1000:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

56

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['1000friends'] = df.apply (lambda row: scoring (row),axis=1)

score['1000friends'].head()

In[420]:

sent less than 20 tweets, spambot

def scoring (row):

 if row['statuses_count'] < 20:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['1000friends'] = df.apply (lambda row: scoring (row),axis=1)

score['1000friends'].head()

In[421]:

egg avatar, default profile image

def scoring (row):

 if row['default_profile_image'] == '':

 return 0

 else:

 return 1

57

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['profile_pic'] = df.apply (lambda row: scoring (row),axis=1)

score['profile_pic'].head()

In[422]:

Never tweeted

def scoring (row):

 if row['statuses_count'] == 0:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['NeverTweeted'] = df.apply (lambda row: scoring (row),axis=1)

score['NeverTweeted'].head()

In[423]:

50:1 friends/followers

def scoring (row):

58

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

 if 50*row['followers_count'] <= row['friends_count']:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['fifty_FriendsFollowersRatio'] = df.apply (lambda row: scoring (row),axis=1)

score['fifty_FriendsFollowersRatio'].head()

In[424]:

100:1 friends/followers

def scoring (row):

 if 100*row['followers_count'] <= row['friends_count']:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['hundred_FriendsFollowersRatio'] = df.apply (lambda row: scoring

(row),axis=1)

score['hundred_FriendsFollowersRatio'].head()

59

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

In[425]:

Beginning of next draft...

profile contains a description

def scoring (row):

 if row['description'] == '':

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['has_description'] = df.apply (lambda row: scoring (row),axis=1)

score['has_description'].head()

In[426]:

known bot

def scoring (row):

 if row['knownbot'] == 1:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

60

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

assigns function output to new df

score['knownbot'] = df.apply (lambda row: scoring (row),axis=1)

score['knownbot'].head()

In[427]:

Levenshtein Distance less than 30

def scoring (row):

 if row['LevD'] < 30:

 return 1

 else:

 return 0

function is applied

df.apply (lambda row: scoring (row),axis=1)

#output of function applied to rows is assigned to df collumn

df['score'] = df.apply (lambda row: scoring (row),axis=1)

no null values in new score collumn (this collumn could be part of a new df)

df['score'].isnull().values.sum()

assigns function output to new df

score['Levenshtein'] = df.apply (lambda row: scoring (row),axis=1)

score['Levenshtein'].head()

In[428]:

score.shape

In[429]:

score.describe()

In[430]:

61

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Following code is based from Eric Larson code for his Data Mining Class

https://github.com/eclarson/DataMiningNotebooks/blob/master/04.%20Logits%20and

%20SVM.ipynb

from sklearn.model_selection import ShuffleSplit

we want to predict the X and y data as follows:

if 'knownbot' in score:

 y = score['knownbot'].values # get the labels we want

 del score['knownbot'] # get rid of the class label

 X = score.values # use everything else to predict!

 ## X and y are now numpy matrices, by calling 'values' on the pandas data

frames we

 # have converted them into simple matrices to use with scikit learn

to use the cross validation object in scikit learn, we need to grab an instance

of the object and set it up. This object will be able to split our data into

training and testing splits

num_cv_iterations = 3

num_instances = len(y)

cv_object = ShuffleSplit(n_splits=num_cv_iterations,

 test_size = 0.2)

print(cv_object)

In[431]:

run logistic regression and vary some parameters

from sklearn.linear_model import LogisticRegression

from sklearn import metrics as mt

first we create a reusable logisitic regression object

here we can setup the object with different learning parameters and constants

lr_clf = LogisticRegression(penalty='l2', C=1.0, class_weight=None) # get object

now we can use the cv_object that we setup before to iterate through the

different training and testing sets. Each time we will reuse the logisitic

regression

object, but it gets trained on different data each time we use it.

62

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

iter_num=0

the indices are the rows used for training and testing in each iteration

for train_indices, test_indices in cv_object.split(X,y):

 # I will create new variables here so that it is more obvious what

 # the code is doing (you can compact this syntax and avoid duplicating memory,

 # but it makes this code less readable)

 X_train = X[train_indices]

 y_train = y[train_indices]

 X_test = X[test_indices]

 y_test = y[test_indices]

 # train the reusable logisitc regression model on the training data

 lr_clf.fit(X_train,y_train) # train object

 y_hat = lr_clf.predict(X_test) # get test set precitions

 # now let's get the accuracy and confusion matrix for this iterations of

training/testing

 acc = mt.accuracy_score(y_test,y_hat)

 conf = mt.confusion_matrix(y_test,y_hat)

 print("====Iteration",iter_num," ====")

 print("accuracy", acc)

 print("confusion matrix\n",conf)

 iter_num+=1

Also note that every time you run the above code

it randomly creates a new training and testing set,

so accuracy will be different each time

In[432]:

interpret the weights

iterate over the coefficients

weights = lr_clf.coef_.T # take transpose to make a column vector

variable_names = score.columns

for coef, name in zip(weights,variable_names):

 print(name, 'has weight of', coef[0])

does this look correct?

In[433]:

63

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

from sklearn.preprocessing import StandardScaler

we want to normalize the features based upon the mean and standard deviation of

each column.

However, we do not want to accidentally use the testing data to find out the mean

and std (this would be snooping)

to Make things easier, let's start by just using whatever was last stored in the

variables:

X_train , y_train , X_test, y_test (they were set in a for loop above)

scale attributes by the training set

scl_obj = StandardScaler()

scl_obj.fit(X_train) # find scalings for each column that make this zero mean and unit

std

the line of code above only looks at training data to get mean and std and we can

use it

to transform new feature data

X_train_scaled = scl_obj.transform(X_train) # apply to training

X_test_scaled = scl_obj.transform(X_test) # apply those means and std to the test set

(without snooping at the test set values)

train the model just as before

lr_clf = LogisticRegression(penalty='l2', C=0.05) # get object, the 'C' value is less

(can you guess why??)

lr_clf.fit(X_train_scaled,y_train) # train object

y_hat = lr_clf.predict(X_test_scaled) # get test set precitions

acc = mt.accuracy_score(y_test,y_hat)

conf = mt.confusion_matrix(y_test,y_hat)

print('accuracy:', acc)

print(conf)

sort these attributes and spit them out

zip_vars = zip(lr_clf.coef_.T,score.columns) # combine attributes

zip_vars = sorted(zip_vars)

for coef, name in zip_vars:

 print(name, 'has weight of', coef[0]) # now print them out

In[434]:

now let's make a pandas Series with the names and values, and plot them

from matplotlib import pyplot as plt

get_ipython().magic('matplotlib inline')

64

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

plt.style.use('ggplot')

weights = pd.Series(lr_clf.coef_[0],index=score.columns)

weights.plot(kind='bar')

plt.show()

In[435]:

from sklearn.preprocessing import StandardScaler

we want to normalize the features based upon the mean and standard deviation of

each column.

However, we do not want to accidentally use the testing data to find out the mean

and std (this would be snooping)

from sklearn.pipeline import Pipeline

you can apply the StandardScaler function inside of the cross-validation loop

but this requires the use of PipeLines in scikit.

A pipeline can apply feature pre-processing and data fitting in one compact

notation

Here is an example!

std_scl = StandardScaler()

lr_clf = LogisticRegression(penalty='l2', C=0.05)

create the pipline

piped_object = Pipeline([('scale', std_scl), # do this

 ('logit_model', lr_clf)]) # and then do this

weights = []

run the pipline cross validated

for iter_num, (train_indices, test_indices) in enumerate(cv_object.split(X,y)):

 piped_object.fit(X[train_indices],y[train_indices]) # train object

 # it is a little odd getting trained objects from a pipeline:

 weights.append(piped_object.named_steps['logit_model'].coef_[0])

weights = np.array(weights)

In[436]:

import plotly

plotly.offline.init_notebook_mode() # run at the start of every notebook

65

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

error_y=dict(

 type='data',

 array=np.std(weights,axis=0),

 visible=True

)

graph1 = {'x': score.columns,

 'y': np.mean(weights,axis=0),

 'error_y':error_y,

 'type': 'bar'}

fig = dict()

fig['data'] = [graph1]

fig['layout'] = {'title': 'Logistic Regression Weights, with error bars'}

plotly.offline.iplot(fig)

In[437]:

not sure if needed so haven't fixed yet

Xnew = df_imputed[['Age','Pclass','IsMale']].values

weights = []

run the pipline corssvalidated

for iter_num, (train_indices, test_indices) in enumerate(cv_object.split(Xnew,y)):

piped_object.fit(Xnew[train_indices],y[train_indices]) # train object

weights.append(piped_object.named_steps['logit_model'].coef_[0])

weights = np.array(weights)

error_y=dict(

type='data',

array=np.std(weights,axis=0),

visible=True

)

graph1 = {'x': ['Age','Pclass','IsMale'],

'y': np.mean(weights,axis=0),

'error_y':error_y,

'type': 'bar'}

fig = dict()

66

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

fig['data'] = [graph1]

fig['layout'] = {'title': 'Logistic Regression Weights, with error bars'}

plotly.offline.iplot(fig)

In[438]:

okay, so run through the cross validation loop and set the training and testing

variable for one single iteration

for train_indices, test_indices in cv_object.split(X,y):

 # I will create new variables here so that it is more obvious what

 # the code is doing (you can compact this syntax and avoid duplicating memory,

 # but it makes this code less readable)

 X_train = X[train_indices]

 y_train = y[train_indices]

 X_test = X[test_indices]

 y_test = y[test_indices]

X_train_scaled = scl_obj.transform(X_train) # apply to training

X_test_scaled = scl_obj.transform(X_test)

In[439]:

score.head()

In[440]:

lets investigate SVMs on the data and play with the parameters and kernels

from sklearn.svm import SVC

train the model just as before

svm_clf = SVC(C=0.5, kernel='rbf', degree=3, gamma='auto') # get object

svm_clf.fit(X_train_scaled, y_train) # train object

y_hat = svm_clf.predict(X_test_scaled) # get test set precitions

acc = mt.accuracy_score(y_test,y_hat)

conf = mt.confusion_matrix(y_test,y_hat)

print('accuracy:', acc)

print(conf)

67

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

In[441]:

SVM Without logistic regression

svm_clf = SVC(C=0.5, kernel='rbf', degree=3, gamma='auto') # get object

svm_clf.fit(X, y) # train object

y_hat = svm_clf.predict(X) # get test set precitions

acc = mt.accuracy_score(y,y_hat)

conf = mt.confusion_matrix(y,y_hat)

print('accuracy:', acc)

print(conf)

In[363]:

score.head()

In[364]:

look at the support vectors

print(svm_clf.support_vectors_.shape)

print(svm_clf.support_.shape)

print(svm_clf.n_support_)

In[365]:

if using linear kernel, these make sense to look at (not otherwise, why?)

print(svm_clf.coef_)

weights = pd.Series(svm_clf.coef_[0],index=df_imputed.columns)

weights.plot(kind='bar')

In[366]:

Now let's do some different analysis with the SVM and look at the instances that

were chosen as support vectors

now lets look at the support for the vectors and see if we they are indicative of

anything

68

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

grabe the rows that were selected as support vectors (these are usually instances that

are hard to classify)

make a dataframe of the training data

score_tested_on = score.iloc[train_indices] # saved from above, the indices chosen for

training

now get the support vectors from the trained model

score_support = score_tested_on.iloc[svm_clf.support_,:]

score_support['knownbot'] = y[svm_clf.support_] # add back in the 'Survived'

Column to the pandas dataframe

score['knownbot'] = y # also add it back in for the original data

score_support.info()

In[367]:

now lets see the statistics of these attributes

from pandas.tools.plotting import boxplot

group the original data and the support vectors

df_grouped_support = score_support.groupby(['knownbot'])

df_grouped = score.groupby(['knownbot'])

plot KDE of Different variables

vars_to_plot = ['banner_link','profile_pic','has_screen_name','30followers']

for v in vars_to_plot:

 plt.figure(figsize=(10,4))

 # plot support vector stats

 plt.subplot(1,2,1)

 ax = df_grouped_support[v].plot.kde()

 plt.legend(['real','bot'])

 plt.title(v+' (Instances chosen as Support Vectors)')

 # plot original distributions

 plt.subplot(1,2,2)

 ax = df_grouped[v].plot.kde()

 plt.legend(['real','bot'])

 plt.title(v+' (Original)')

In[145]:

69

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018

Levenshtein Tests

Lev.distance('Phillip Efthimion', '@RTscott_payne: Phillip Efthimion')

In[699]:

tweets = pd.read_csv('social_spambots_2.csv/tweets.csv')

tweets = tweets.fillna('')

tweets['text'] = tweets['text'].astype(str)

tweets.info()

rus_users['followers_count'] = rus_users['followers_count'].fillna(0).astype(int)

In[712]:

choices = tweets['text'][3:20]

process.extract(tweets['text'][2], choices, limit=2)

#process.extractOne(tweets['text'][1], choices)

70

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 5

https://scholar.smu.edu/datasciencereview/vol1/iss2/5

	Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots
	Recommended Citation

	OLE_LINK1

