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Abstract. In this paper, we present novel bot detection algorithms to identify 

Twitter bot accounts and to determine their prevalence in current online 

discourse. On social media, bots are ubiquitous. Bot accounts are problematic 

because they can manipulate information, spread misinformation, and promote 

unverified information, which can adversely affect public opinion on various 

topics, such as product sales and political campaigns. Detecting bot activity is 

complex because many bots are actively trying to avoid detection. We present a 

novel, complex machine learning algorithm utilizing a range of features 

including: length of user names, reposting rate, temporal patterns, sentiment 

expression, followers-to-friends ratio, and message variability for bot detection. 

Our novel technique for Twitter bot detection is effective at detecting bots with 

a 2.25% misclassification rate.  

1   Introduction 

The dominance of human users as the primary generators of Internet traffic is coming 

to an end. In 2016, bots generated more Internet traffic than humans [14]. A bot is a 

piece of software that completes automated tasks over the Internet. On social media, 

the prevalence of bots is ubiquitous. By some estimates, nearly 48 million Twitter 

accounts are automated [13]. Although many bots, such as ‘fake follower bots’, are 

easy to detect bots that mimic human behavior and seek to spread information while 

posing as a human user are more difficult to detect.  

 Bots serve a plethora of purposes, many of which provide services to users. Bots 

are categorized as “good” or “bad” based on the transparency with which they 

disclose their identity. These ‘social spambots’ can serve a variety of purposes, but 

can be very difficult to detect, even by human observers [15]. Bad bots do not identify 

themselves to the web servers they access, while good bots declare and identify 

themselves. Roughly 44% of Internet bot traffic is categorized as good and the other 

56% is categorized as bad [14]. The ability to detect bot accounts on social media 

sites like Twitter is important for a healthy information exchange ecosystem.  

 Studies suggest that in the months leading up to the 2016 U.S. Presidential 

Election, a fifth of all tweets on Twitter that were related to the election came from a 

legion of bot accounts [1]. Taking up a large percentage of the political discourse in a 
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well-travelled setting, these bots had a large effect on the Presidential Election by 

refracting the natural conversations of the issues and events surrounding it. 

Identifying bots on Twitter have become such an issue that DARPA has held a 

competition in order to foster new strategies in countering bots on Twitter designed to 

influence other users.  

 Identifying problematic bots will allow Twitter users to be shielded by groups that 

aim to affect the perception of how entities and events are actually being perceived by 

Twitter’s user base. This can lead to users having a skewed perception of the events 

around them. When working together in large clusters, bots have the ability to push 

narratives that could be false and misleading. Bots are not necessarily bad. Many 

serve useful purposes, but the ability to detect bot accounts protects the spontaneous 

nature of information exchange on social media platforms like Twitter. Additionally, 

methods to detect bots on Twitter are becoming more complex as the bots themselves 

and their purposes become more complex. At this point simple equations will not 

accurately identify bots.   

 By readily identifying Twitter accounts as bots, users will be educated not to be 

fooled and manipulated by bot messages on Twitter. Additionally, if bots are 

discovered early, their messages will not be further amplified by people forwarding 

them.  

 A rule-set can be developed to test Twitter accounts to see if they are bots by 

observing rule-sets from other studies and with bridging different areas to classify 

together. Twitter users and researchers can use rule-sets to test if accounts are bots. 

By training and testing these rules on a dataset where each account is confirmed and 

classified to be a bot accounts can be tested live on Twitter. If accounts can be 

classified as a bot in real-time, users will be safeguarded against messages and 

narratives pushed by bots on Twitter.  

 The rule set has proved to be very effective in classifying bots. When tested against 

different categories of bot accounts, the rule set proved was very effective and scored 

high marks in accuracy and true positivity rate. The true positivity rate tells us the 

percentage of Twitter accounts predicted to be true were actually true. This statistic is 

an important indicator that there are a low percentage of false positives and 

misclassification of accounts as bots when they are actually run by people. However, 

not every variable can be tested in real time, although they were still accurate. This 

list of variables is not believed to be comprehensive, but does provide an idea of how 

important these factors can be. Further advanced factors are believed to be needed to 

identify more sophisticated bots.  

 The remainder of this paper is organized as follows: In Section 2, background 

information on the subjects from related works is provided. Section 3 contains a 

description of the data and an initial analysis. Section 4 explains the novel method to 

classify Twitter accounts as humans or bot driven. Results are presented in Section 5, 

followed by the ethical ramifications of bots in social media in Section 6. Finally, a 

conclusion and plan for future work to be performed in Section 7. 
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2   Related Work 

 

2.1 Twitter 

 

Twitter, launched in 2006, is a microblogging (extremely short-form blogging), social 

media network [5]. Communicating via tweets, which are limited in size to only 280 

characters, users relay messages to each other. These messages can be in the forms of 

tweeting, authoring messages; replying, responding to another person’s message; and 

direct messaging, tweeting a message to another user that is not available for view to 

the public. User accounts converse with each other by tagging each other with the 

“@” symbol preceding the target account’s name. Additionally, users have the ability 

to interact with other accounts on specific topics by using the hashtag symbol “#”. 

Any tweet containing the hashtag symbol is grouped on a timeline of all tweets that 

contain that same hashtag.   

Users can self-aggregate content they want to see by choosing the accounts they 

follow. Accounts they follow can be friends, companies, institutions, writers, 

celebrities, or politicians. Users are also able to communicate and further distribute 

content by ‘liking’ and ‘retweeting’ users’ tweets. A tweet that is retweeted is added 

the user’s timeline; a collection of posts that are created by or mention the user. 

Accounts that follow a user are able to see all content on their timeline.  

Twitter activity has been classified into 4 main categories: daily chatter, 

conversations, URLs, and reporting news [5]. Daily chatter is users informing others 

about their daily lives. Conversations occur when users tag each other using the ‘@’ 

symbol. URLs are used to share links to other websites with other users. Reporting 

news is discussion about current events. These categories can also blend together. 

News is spread on Twitter through using URLs to link to news articles. 

Twitter was estimated to have 69 million monthly active users by the third quarter 

of 2017 in the United States [10] and 330 million worldwide [12], giving it a global 

reach. This is substantial growth since its 30 million monthly active users worldwide 

in the first quarter of 2010 [11]. 

Twitter became an effective tool in presidential elections to spread political 

messages. In the 2012 US presidential election, there were 45 million monthly active 

accounts and the number jumped to 67 million monthly active users in the most recent 

presidential election in 2016.  

 

 

2.2 Bots 

 

An Internet bot is an automated software application. It can run any range of tasks and 

does so repetitively. The implementation of bots on the Internet is so widespread that 

bots made up 50% of all online traffic in 2016 [14]. Some of the tasks that bots 

perform are feed fetchers, commercial crawlers, monitoring, and search engine bots. 

For example, feed fetchers change the display of websites when they are accessed for 

mobile users and search engine bots collect metadata that allows the search engine to 

perform. These tasks shape the Internet as we see it daily. 
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Chu et al. classifies Twitter accounts as human, bot, or cyborg accounts [21]. The 

distinction between these three classifiers is the level of automation placed on the 

account. An account that Chu et al. classified as human had no activity that is 

automated [21]. An account where all of its activity is automated is considered a bot. 

An account that is a mix of automated and non-automated tweets is considered a 

cyborg. An account that is classified as a cyborg can be run two different ways. The 

account could be run in a way that would be classified as a human, but also have 

some automated messages. An account that is classified as a cyborg could also be 

automated for all of its activity, but it’s controller may sometimes send other, non-

scheduled tweets. An example of an automated tweet could be a media company’s 

Twitter account tweeting a link to an article on its website each time an article is 

published. This is also an example of a benign bot.   

 

 

2.3 Twitter Bots 

 

A Twitterbot is an Internet bot that operates from a Twitter account. Some of the tasks 

that can be automated from a Twitter bot are writing Tweets, retweeting, and liking. 

Twitter does not mind the use of Twitter bot accounts as long as they do not break the 

Terms of Service through actions such as Tweeting automated messages that are spam 

or Tweeting misleading links.  

Twitter bots, like bots in general, serve a variety of purposes ranging from simple 

tasks such as following a user to more complex tasks like engaging in discussion with 

other users. Social bots are a type of bot that interacts with users and whose purpose is 

to generate content that promotes a particular viewpoint. The veracity of the content is 

irrelevant to the detection of the social bot. It is estimated that between 9 and 15 

percent of Twitter accounts are bots [13]. The goal of our bot detection research is to 

develop refined techniques that are able to detect social bots that are actively avoiding 

being caught by traditional bot detection techniques. 

There are many types of bots on Twitter. One type of bot exists only to artificially 

increase the number of followers that an account has [4]. The number of Twitter 

followers determines its influence because the extent of the followers determines how 

widely spread is the account’s message. and the weight it’s message receives. People 

are more likely to trust an account with 1 million Twitter followers than 100 [5]. 

Using bots to artificially inflate the number of followers an account is a way to 

increase one’s popularity and attract more human followers [2].  

3   Data 

The test data consists of different types of bot accounts. This cluster of accounts make 

up the Cresci-2017 dataset. In the Cresci-2017 dataset, we have three groups each of 

social spambots and traditional spambots [4]. The social spambots are separated into 

three main groups. The first group is accounts that retweeted a political candidate in 

Italy. The second group is spambots attempting to get users to download a mobile 

app. The third group consists of spambots trying to sell products on Amazon.com. 
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The traditional spambots are also separated into three main groups. The first group is 

general spambots without a focus. The second group is spambots that attempt to 

promote a web URL for users to click on [4]. The third group of traditional spambots 

are trying to push job offers onto users and for the users to click a given URL [4]. 

Additionally, we have another type of bot that is fake followers [4]. A fake follower 

account is one that exists to just make a user appear more popular or influential than 

they are. Finally, we have a type of accounts that have been verified to be ‘real’, used 

by humans. These ‘real’ accounts were tested by Cresci by contacting users directly, 

to which their responses had to be manual [4]. For each of these types, there are two 

separate files: one for user’s profile data and one for the user’s tweets data. This is 

one of the datasets used by Botometer in order to train their model [3]. Botometer is a 

bot detection tool developed by Indiana University Network Science Institute. It 

operates by inputting the username of a Twitter account and it outputs a percent likely 

that the inputted account is a bot [3]. Though, the tweets may not be as current and 

from this year, these accounts have been verified to be bots or used by humans. 

Downloading current Twitter data from random users cannot be used to train the 

algorithm unless the account is classified. Classification allows the algorithm to 

classify a test set of accounts. Without an account having this distinction, which is 

primarily the case when 

 
Table 1.  Distribution of number of account and tweets by Dataset within Cresci 2017 dataset 

 

Grouping Number of Accounts Total number of Tweets 

Social Spambots 4,912 3,457,344 

Traditional Spambots 1,533 6,014,982 

Fake Followers 3,351 196,027 

Real Users 3,474 8,377,522 

 

 

 There is also a dataset of accounts and their tweets collected by NBC News and 

released February 14, 2018. They are a group of tweets that Twitter has deemed to 

have participated in “malicious activity” with concern to this past U.S Presidential 

Election in 2016 [22]. These bots were a part of networks of accounts that had 

interacted with over one million users, which Twitter had to notify. These accounts 

have since been suspended by Twitter but can give us insight into current bot 

behaviors [22]. The data set consists of 454 accounts and 203,483 tweets written by 

them.  

 Figure 1 is the distribution of Twitter accounts by bot type. The largest datasets 

used for this project are the first and second social spambot groups and the second 

group of traditional bots. The type of bot with the lowest number of Twitter accounts 

is the fake followers dataset with less than 500 accounts. The Russian bot dataset also 

has just under 500 Twitter accounts. There are about 1,000 Twitter accounts in our 

overall dataset that have been confirmed to be both not automated and human run 

which are referred to as ‘real users’.  
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Fig. 1. Distribution of Twitter Accounts versus type and group datasets. 

 

 Figure 2 is the distribution of account followers for the different types and groups 

of bot datasets.  The Twitter accounts in the Russian dataset have the most followers 

of our datasets. They have almost twice as many as the next highest on average. The 

Russian dataset has on average over 8,000 followers. Real user accounts have less 

than 1,000 followers on average. A lot less on average than the majority of bot 

accounts.  

 

 
 
Fig. 2. Distribution of account followers for the different types and groups of bots.   

 

 

Figure 3 is the average number of friends per Twitter account in each dataset.  All 

of the different bot datasets have friended more people than the fake followers 

dataset. The second social spambot dataset averages having almost 2,000 friends on 

Twitter. This is then followed by the accounts in the second traditional and third 

social bot dataset. The real accounts have sent the fourth most tweets averaging over 

1,000. It makes sense that the fake followers would have a very low average of 

friends because they exist only to follow other accounts.  
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Fig. 3. Average number of friends per Twitter account in each dataset. 

 

   

 Figure 4 is the average number of tweets per account in each dataset.  The second 

social spambots dataset on average has tweeted the most times, over 16,000 times. 

The next highest are the accounts in the Russian bot dataset and then followed by the 

second traditional spambot dataset. Real accounts on average have tweeted less than 

1,000 times.    

 

 
Fig.4. Average Number of Tweets Per Account Per Dataset 

 

Figure 5 is the average number of favorites per account per dataset. Individual 

account owner will designate a Twitter posting as a “favorite.” The account with the 

most favorites on average is the second social spambots dataset. Its accounts average 

almost 4,500 favorites. This is followed by the third social spambots dataset which 

averages over 1,000 favorites. The first traditional spambot dataset averages almost 

150 favorites per tweet. The remaining datasets average under 50 favorites per tweet.  
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Fig. 5. Average Number of Favorites Per Account Per Dataset 

 

4   Methods and Analysis 

On Twitter, information can be gained about a user from their personal account 

information, tweets, likes, retweets, and direct messages. Users’ direct messages are 

not accessible for privacy reasons. To identify bots, we set up three basic areas for 

analysis: profile, account activity, and text mining [7]. 

-Profile: On social media platforms, most users place some personal information 

about themselves or details to express their individuality. An example of this is a 

Twitter user’s profile image. The image can be of the user, a corporation, or other 

image that expresses a characteristic that the user wants identified with their account. 

Lack of such imagery and individual information might be a sign that a Twitter 

account is a bot. Bots can lack these profile details when a botnet system creates 

many bots at once. However, these are not sure signs that a Twitter account is run by 

a bot. With the privacy concerns of today, some users on social media accounts may 

intentionally hold back personal information to prevent their information from being 

stolen. We test 14 variables related to each Twitter user’s profile to see if an account 

is a bot. Each of these variables is described in further detail below.  

A unique screen name is required for a Twitter account and cannot be changed. It is 

the account’s unique identifier. However, the account’s name is optional and can be 

changed any number of times. We test if an account has a name at all.  

Under this philosophy, we also test if an account has a profile picture. Social media 

accounts will have some form of individuality and a profile picture is the most 

common. Accounts without those or the default profile image are more likely to be 

bots. 

Main user engagement on Twitter is through reading the content of accounts that 

are followed. Bots have no reason to follow other accounts as they are trying to 

disseminate information, not learn from following others. Therefore, we classify an 

account as a bot if it follows less than 30 accounts. 
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On the other hand, we do not expect most users to have a large number of friends, 

accounts which receive and read their tweets, as this would overwhelm their timeline. 

Therefore, we place a cap on the number of friends an account has. An account with 

over 1000 friends is marked as a bot.  

In addition to the absolute quantity, it is also informative to look at the ratio 

between the number of friends and the amount of followers an account has. Looking 

at others research [4], there are different rulesets for classifying bots by this ratio. The 

StateOfSearch.com ruleset asks for a friend to follower ratio of 100:1 for 

classification purposes while Socialbaker’s FakeFollowersCheck believes only a 50:1 

ratio is required. Both have been selected as factors for the algorithm.  

Turning on geo-location is another indication of a human user, because it is an 

account setting bots have no need with which to engage.  

The primary goal of some types of bots, such as spambots, is to initiate clicks of a 

link. The link could be for directing web traffic to a website or to download malicious 

software on an unsuspecting user. There are many valid reasons for accounts run by 

humans to contain links, such as to their home websites or online portfolios.  

Therefore, we take into account this single variable amongst the other 13 variables to 

determine whether an account is classified as a bot. 

Interaction is a bedrock of social media. The volume of tweets generated by an 

account can distinguish between humans and bots of different intentions. We choose 

to make the cut off for human accounts a minimum of 50 tweets. We also believe that 

accounts that are purely fake followers will have never sent a tweet while other types 

of bots, such as traditional spambots, will have created some statuses to appear real.  

Therefore, we are grouping bots into related categories of if they contain less than 20 

tweets and absolutely zero tweets. 

The final profile variable is whether an account has a personalized description. 

Again, because bot accounts can be made thousands at a time they lack these 

customizations to be created more quickly.  

-Account Activity: Account activity is also an indication if an account is operating 

by a bot. A bot’s automated activity is identified through abnormal user patterns, such 

as posting all hours of the day and night and posts occurring at the exact time daily or 

weekly. With Twitter, users are able to pre-set a written tweet to be sent at a certain 

time. An account that sends a tweet at the same time daily, maybe advertising a 

limited time offer, would be an example of activity similar to how a bot would 

behave.  

 -Text Mining: Text mining also gives insight on whether an account is bot 

controlled. To disseminate their misinformation, bot accounts may post the same, or 

very similar, messages repeatedly to evade Twitter’s spam filters, which identify 

repeated messages. Some bots are capable of slightly modifying their original 

message. We use the Levenshtein distance to measure for similarity of users’ tweets. 

[4]. The Levenshtein distance is the measurement of how many changes would need 

to be made to convert a first string into a second [4]. A simple example would be how 

many changes would have to be made to make the word ‘Dallas’ into the word 

‘Texas’. By mining the text data, we see these patterns with the messages a Twitter 

account is sending. The following paragraphs describe the types of patterns in the text 

that indicate bot activity. 
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Spam bot accounts try to get other users to click on a website link. Therefore, if text 

mining concludes the presence of the same string of text in the messages, this may 

indicate a link and bot activity. There are other text patterns to look for, including the 

strings ‘http’, https’, ‘www’, and ‘bit.ly,’ which identify that there are links to third 

party websites in a message [1] [4].  

 Spam comments in blogs contain unnecessary spaces to mask specific words that 

would otherwise be flagged by filters. To capture these instances, we deleted all 

spaces from the tweets and measured through the Levenshtein distance.  

Applying the Levenshtein distance to a large dataset is very computationally 

expensive. Therefore, only a smaller sample of data is used when testing the 

Levenshtein distance.  

 

 

 

 

 

 

 

 
Table 2.  Bot Classification Variables By Area of Analysis 

 

Area of Analysis Variable 

 

 

 

 

 

Profile 

Absence of id 

Absence of a profile picture 

Absence of a screen name 

Has less than 30 followers 

Not geo-located 

Language not set to English 

Description contains a link 

Has sent less than 50 tweets 

2:1 friends/followers ratio 

Has over 1,000 followers 

Has the default profile image 

Has never tweeted 

50:1 friends/followers ratio 

100:1 friends/followers ratio 

Absence of a description 

Text Analysis Levenshtein distance between user’s 

tweets is less than 30 

 

 

After analyzing the data for each of the variables tested for the result is placed into 

a binary matrix. This new matrix is preparation for analysis via support vector 

machining.  

 

 
Table 3.  Subset of Discrete Matrix to prepare for support vector machine 
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However, before using the support vector machining algorithm, on our data, 

logistic regression is applied. This process of logistic regression followed by applying 

support vector machining was done so based on Eric Larson’s instructional guide 

[23]. Logistic regression is excellent for preparing data for support vector machining 

because it outputs the data into binary classifications. This is required for support 

vector machine.  

Support vector machining is used to test our bot detection model against different 

datasets of known Twitter bots. The efficacy of the model is evaluated by the 

misclassification rate (error rate) and the true positive rate. A low misclassification 

rate means we are not misidentifying accounts owned by real people as bots. The 

misclassification rate is derived by 1 – accuracy of model. The true positive rate is the 

rate that our algorithm correctly predicts that an account is a bot.  

 

 

 

5   Results 

Compared against social spambots our model is 95.77% accurate, with a 

misclassification rate of 4.23% The true positive rate of this model for social 

spambots is 96.81%. This means that we are correctly identifying that something is a 
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bot 96.81% of the time which is slightly better than the model’s accuracy. This was 

done with a total dataset of 8,386 total accounts; 4,912 social spambots and 3,474 real 

accounts.   

Looking at the weights in Figure 6, we can see that being geo-located was the best 

indicator that an account is a social spambot. In terms of readily available information 

that a user has when browsing Twitter, if the account has less than 30 followers is the 

best indicator. Variables that weighed negatively with our data were if there was a 

link in the banner, if the language was set to English, if the account had a profile 

picture and if the account had over 1000 friends.  

 

 
Fig. 6. Logistic Regression weights for social spambots 

 

For tradition spambots in our model, we had an accuracy of 96.25%, 

misclassification rate of 3.75%, and true positive of 97.13%. As shown below the 

weights for the variables in the logistic regression before the support vector 

machining were similar to the ones above for the social spambots.  
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Fig. 7. Logistic Regression weights for traditional spambots 

 

We also want to show that even though the banner_link looks like it is negatively 

impacting our model the density curves as instances chosen by the support vectors has 

not. Actually, we have found that removing the banner_link variable reduces the 

accuracy and true positive rate by over 5%.  

The last type of bots that we compare our model to is the fake followers. With our 

model, looking only at the profile information, we had 100% accuracy and 100% true 

positive rate. This also means that there were no mis-classified variables. This is the 

type of bot that our model has identified the best. The weighting from the logistic 

regression beforehand also looks very different from the two types of spambots. The 

highest indicator for a fake_follower type of bot was if it had a profile picture. As 

these types of accounts are not expected to interact in any way with other users, less 

basic information for them is created. Other important indicators for identifying fake 

followers are if the accounts had at least 30 followers, had written 50 tweets, and had 

twice the number of followers than friends.  
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Fig. 8. Logistic Regression Weights for Fake followers bots  

 

For the confirmed Russian bots datasets gathered from NBC News, our model 

provides a 99.87% accuracy along with a 0.13% misclassification rate and a 98.91% 

true positive rate. From the logistic regression weights, the profile picture is the most 

important indicator in deciding if an account is a bot.  

 

 

 
Fig. 9. Logistic Regression Weights on confirmed Russian bots 

 

We will now show the performance of our classification model when using all of 

the types of bots we have in our dataset. This consists of a total of 16,649 Twitter 

accounts. Our model scored a 97.75% with a 2.25% misclassification rate and 98.98 
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true positivity rate. Here is a chart that summarizes our classification findings while 

using support vector machining on the profile information.  

 
Table 4: Profile Analysis Results 

 Accuracy Misclassification 

Rate 

True Positive Rate 

Social Spambot 95.77% 4.23% 96.81% 

Traditional 

Spambot 

96.25% 3.75% 97.13% 

Fake Followers 100% 0% 100% 

NBC News 

Russian Bots 

99.87% 0.13% 98.91% 

Total 97.75% 2.25% 98.98% 

A subset of the Russian bots and real user accounts is used for the text analysis. It 

scored to be 90% accurate and therefore had a 10% misclassification rate. The true 

positive rate for these results is 100%.  

 

 
Fig.10. Logistic Regression of Levenshtein Distance 

 

Using the same subset of the data as we did in figure 9, a complete analysis is 

performed using all of the variables analyzing the profile and the text. It has 100% 

accuracy, 0% misclassification rate, and 100% true positive rate. However, this 

analysis is done on a much smaller sample size.  
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Fig. 11. Logistic Weights for all bots using all variables 

 

On the same smaller sample, support vector machine is performed using every one 

of the variables. It had a 100% accuracy, 0% misclassification rate, and 100% true 

positivity rate.  

 

 

6   Analysis 

When using variables related to the Twitter account’s profile, only 4.25% of the data 

is misclassified. Also, 96.81% of the social spambots are correctly predicted. 

Geolocation and having less than 30 followers were very influential weights for the 

model. Interestingly, it is seemingly not an important factor that social spambots, 

which attempt to get users to click on links, do not have links in their profile’s 

description.  

The traditional spambots performed similarly to the social spambots, but the 

analysis performed slightly better. Only 3.75% of accounts became misclassified and 

the true positivity rating is 97.13%. The weights between the traditional spambots and 

social spambots are nearly identical. This shows that there is similarity in how the two 

bot types are constructed.  

The fake followers bots were classified accurately in 100% of cases. This along 

with 0% misclassified, and 100% true positivity rating means that this is the type of 

bot the model is performing best at diagnosing. This is most likely because fake 

followers type bots do not perform activities besides following users. Therefore, 

variables from just using profile information should be enough to properly classify 

them. 
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We trained the data on these 3 types of bots and then tested the trained data on the 

dataset of confirmed Russian bots. When tested, the model only misclassified 2.25% 

of the users and had a true positivity rating of 98.98%. It is possible that these results 

scored higher that with the social spambot or traditional spambots because there could 

have been some accounts that were of the fake follower type which would inflate the 

scores. The heaviest weighted factor is whether an account had a profile picture. It is 

interesting that geolocation and having the account’s settings set to English did not 

weigh heavily in the analysis considering these bots were Russian in origin. This 

means that many Russian bots have their language settings set to English. Writing in 

English would significantly increase the chance a bot would have a native English 

speaker interact with them because there would be no language barrier.  

When testing for Levenshtein distance, even though the model was 90% accurate, 

this is most likely due to overfitting. This analysis will need to be redone with a larger 

dataset. Calculating the Levenshtein distance for the entire dataset is computationally 

heavy. A more efficient method will have to be researched in order for this variable to 

be effective in this analysis.  

7   Ethics 

There are many ethical issues regarding the use of public data gathered from the 

internet. In the world of social media, the information collected contains personal data 

that is linked to user accounts that could be linked to an individual’s identity. We 

must ensure that we collect our data and use it in an ethical manner and obey all of 

Twitter’s guidelines on fair use. These guidelines allow for the collection of Twitter 

data using proper methods to then be used in research, but the guidelines are 

constantly evolving. Twitter initially allowed any Twitter data collected in the proper 

way to be shared as a complete data set. Twitter has now amended its policies to only 

allow the sharing of account or tweet IDs as a data set. This requires researchers to 

populate the data using their own API key in a process known as “rehydrating”. While 

this provides more protection for users to have their information removed from 

Twitter and not appear in future data sets that are “rehydrated” after the date a user 

has deleted their accounts or tweets, it complicates matters for researchers.    

One of the first ethical issues is that of informed consent [17]. In studies, subjects 

must opt into the study in order for their work to be used. This is to ensure that 

subjects know exactly what the study is and what they are signing up for. However, 

Twitter is a public social media forum, where anyone can read a publicly shared 

tweet. Therefore, it can be argued that consent is not needed in this case. There could 

also be the case of that we are taking information from an account, not a person. A bot 

account may not even be able to process what it is being asked. Also, Twitter’s Term 

and Conditions have this policy outlined that bot accounts need to identify themselves 

as such. One possible way to combat this issue is as Webb et al. described as an opt 

out approach. This is where we send each account a message saying that they can opt 

out of the study if they so choose.  

Two other issues Webb et al. describe are do no harm and protect anonymity [17]. 

Only a small portion of Twitter accounts (primarily celebrity and corporate/brand 
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accounts) have their identities confirmed and a large amount use false names for an 

online persona. It is common practice to hide any personal information when 

performing a study, which can easily be done by not showing any account names. 

However, the contents of a tweet could be enough to reveal a user’s identity using its 

contents and timestamp. Using the Twitter API, it would be very easy to identify a 

user by inputting the exact tweet plus a timestamp. In 2017, there have been 

numerous circumstances of people being doxed1 from their tweets that led to their 

eventually firing. Others, such as ESPN’s Jemele Hill, have been suspended for views 

expressed on her Twitter account. We do not believe in bringing harm to a user or risk 

bringing harm to them in any way. Therefore, we will not be publishing any 

individual tweets. We will still collect the contents of each tweet for our study, but the 

individual tweets themselves will not be published. The reason that we need to collect 

the information of the tweets is to perform text mining on each tweet’s content for our 

algorithm. We will protect the anonymity of users in this study by not publishing 

personally identifying or account identifying information. 

There is also the ethical dilemma of sharing the results [19]. We must answer the 

question of what is the ethical process of informing Twitter users that we believe an 

account is a bot. Because bot accounts that do not identify themselves are in violation 

of the Twitter TOS (Terms of Service), it is acceptable to identify them as bots. The 

algorithm that we create will only give a percent certainty, so it is possible that we 

flag an account as a malevolent bot, but if that flagged account is a person and not a 

bot, then we will have created a new ethical concern. The best solution to this ethical 

problem is to provide tools for users to be able to identify bot accounts themselves 

and block the bot content or report the account to Twitter if they choose. 

 

8   Conclusions  

The ruleset that we have proposed works best against bots that are the fake follower 

type. This can be improved even further by adding more variables about users activity 

patterns and the contents of the tweets. A large dataset is required to adequately 

analyze the tweets.  

The Russian tweets may be among the less sophisticated as they were discovered. 

More variables are required in order to potentially find a more sophisticated bot.  

With the ability to discriminate between real user accounts and malicious Twitter 

bots, our model could be applied to stop the spread of false information. According to 

a survey conducted by Zignal Labs which received responses by over 2,000 adults 

located the US, 86% of Americans do not always fact check articles that they have 

read via a link on social media [24]. Additionally, 27% of the respondents in the 

survey admit they do not fact-check articles they themselves share [24]. Intercepting 

in real time with the credibility of the information or opinion will decrease the chance 

the user spreads false information. 

                                                           
1 Having one’s personal information or documents leaked online 
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Out theoretical end goal is a way for Twitter users to identify whether an account is 

a bot or not with as little extra work as possible to make it more likely that our 

information gets used. Our end goal is an Internet browser extension that allow users 

to identify if an account is a bot without leaving the website. This information will be 

relayed by hovering over an account name with your mouse. When done so, our 

proposed extension will display a bubble containing our model’s conclusion on 

whether the account is a bot. Our idea is that if users understand that information is 

from a source that they do not know and is from a bot that they will not blindly spread 

it without more research. In this case information is not only in the form of links to 

articles. It could also pertain to eye-witness claims and information from unknown 

reporters. As Ben Popkin from NBC News stated, many of the Russian bot accounts 

were ‘impersonating Americans’ [23]. They were also tweeting during large events 

such as debates, and terrorist attacks. Possibly to influence people’s opinions on 

topics. By having a real time tool at people’s fingertips, we can prevent unwelcome 

influence. 

According to Sinan Aral and his team “it took the truth six times as long as 

falsehoods to reach 1,500 people’ [25] The danger of one person reading incorrect 

media is that it can easily be spread to others. Therefore, we have developed a method 

to let people fact check the validity of Twitter accounts without having to leave the 

website or their Twitter app on their smartphone. Having this chrome extension use 

our ruleset to identify bots in real-time is an ideal implementation of the ruleset in 

future work.  
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Appendix: Code 

 

 

 

 

# coding: utf-8 

 

# In[3]: 

 

 

import pandas as pd 

import numpy as np 

import os 

 

import Levenshtein as Lev 

from sklearn.utils import shuffle 

import datetime as dt 

import editdistance 

 

 

# In[4]: 

 

 

# Russian Data Set 

rus_tweets = pd.read_csv('/Users/Phillip/Downloads/RussianData/tweets.csv', 

na_filter=False) 

 

rus_tweets.info() 

 

 

# In[5]: 

 

 

samp_rus_tweets = rus_tweets[0:10] 

samp_rus_tweets = samp_rus_tweets['text'] 

samp_rus_tweets = samp_rus_tweets.str.replace(' ','') 

samp_rus_tweets = samp_rus_tweets.str.replace('RT@','') 

#samp_rus_tweets = samp_rus_tweets.sub,'') 

 

#samp_rus_tweets[samp_rus_tweets.find("@")+1:samp_rus_tweets.find(":")] 
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samp_rus_tweets 

 

 

# In[6]: 

 

 

from itertools import product 

 

dist = np.empty(samp_rus_tweets.shape[0]**2, dtype=int)  

for i, x in enumerate(product(samp_rus_tweets, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, samp_rus_tweets.shape[0])) 

 

#dist_df 

print(dist_df) 

 

 

# In[7]: 

 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[61]: 

 

 

rus_tweets_sorted = rus_tweets.sort_values(by=['user_key']) 

 

rus_tweets_sorted = rus_tweets_sorted['text'] 

rus_tweets_sorted = rus_tweets_sorted.str.replace(' ','') 

rus_tweets_sorted = rus_tweets_sorted.str.replace('RT@','') 

 

rus_tweets_sorted1 = rus_tweets_sorted[4171:4207] 

rus_tweets_sorted2 = rus_tweets_sorted[4208:4224] 

rus_tweets_sorted3 = rus_tweets_sorted[4225:4289] 

rus_tweets_sorted4 = rus_tweets_sorted[4290:4327] 

rus_tweets_sorted5 = rus_tweets_sorted[4328:4340] 

rus_tweets_sorted6 = rus_tweets_sorted[4341:4380] 

#rus_tweets_sorted7 = rus_tweets_sorted[4381:4381] 

rus_tweets_sorted8 = rus_tweets_sorted[4382:4432] 

rus_tweets_sorted9 = rus_tweets_sorted[4433:4434] 

rus_tweets_sorted10 = rus_tweets_sorted[4435:4487] 

rus_tweets_sorted11 = rus_tweets_sorted[4488:4892] 

rus_tweets_sorted12 = rus_tweets_sorted[4893:4908] 

rus_tweets_sorted13 = rus_tweets_sorted[4909:4932] 
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rus_tweets_sorted14 = rus_tweets_sorted[4933:4941] 

rus_tweets_sorted15 = rus_tweets_sorted[4942:5015] 

rus_tweets_sorted16a = rus_tweets_sorted[5016:9284] 

rus_tweets_sorted16b = rus_tweets_sorted[9285:14284] 

#rus_tweets_sorted17 = rus_tweets_sorted[14285:14285] 

rus_tweets_sorted18 = rus_tweets_sorted[14286:14317] 

#rus_tweets_sorted19 = rus_tweets_sorted[14318:14318] 

rus_tweets_sorted20 = rus_tweets_sorted[14319:14469] 

rus_tweets_sorted21 = rus_tweets_sorted[14470:15814] 

rus_tweets_sorted22 = rus_tweets_sorted[15815:15899] 

rus_tweets_sorted23 = rus_tweets_sorted[15900:15902] 

rus_tweets_sorted24 = rus_tweets_sorted[15903:15939] 

rus_tweets_sorted25 = rus_tweets_sorted[15940:15946] 

rus_tweets_sorted26 = rus_tweets_sorted[15940:15946] 

rus_tweets_sorted27 = rus_tweets_sorted[15940:15946] 

rus_tweets_sorted28 = rus_tweets_sorted[15940:15946] 

 

 

# In[31]: 

 

 

# find Lev distance for the user #1 

 

dist = np.empty(rus_tweets_sorted1.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted1, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted1.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[32]: 

 

 

# find Lev distance for the user #2 

 

dist = np.empty(rus_tweets_sorted2.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted2, repeat=2)):  

   dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted2.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[33]: 
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# find Lev distance for the user #3 

 

dist = np.empty(rus_tweets_sorted3.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted3, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted3.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[34]: 

 

 

# find Lev distance for the user #4 

 

dist = np.empty(rus_tweets_sorted4.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted4, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted4.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[35]: 

 

 

# find Lev distance for the user #5 

 

dist = np.empty(rus_tweets_sorted5.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted5, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted5.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[36]: 

 

 

# find Lev distance for the user #6 

 

dist = np.empty(rus_tweets_sorted6.shape[0]**2, dtype=int)  
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for i, x in enumerate(product(rus_tweets_sorted6, repeat=2)):  

   dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted6.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[37]: 

 

 

# find Lev distance for the user #7 

 

dist = np.empty(rus_tweets_sorted7.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted7, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted7.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[38]: 

 

 

# find Lev distance for the user 8 

 

dist = np.empty(rus_tweets_sorted8.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted8, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted8.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[39]: 

 

 

# find Lev distance for the user 9 

 

dist = np.empty(rus_tweets_sorted9.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted9, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted9.shape[0])) 

mean_dist = dist_df.mean() 

25

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018



mean_dist.mean() 

 

 

# In[40]: 

 

 

# find Lev distance for the user 10 

 

dist = np.empty(rus_tweets_sorted10.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted10, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted10.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[41]: 

 

 

# find Lev distance for the user 11 

 

dist = np.empty(rus_tweets_sorted11.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted11, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted11.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[42]: 

 

 

# find Lev distance for the user 12 

 

dist = np.empty(rus_tweets_sorted12.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted12, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted12.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[43]: 
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# find Lev distance for the user13 

 

dist = np.empty(rus_tweets_sorted13.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted13, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted13.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[44]: 

 

 

# find Lev distance for the user14 

 

dist = np.empty(rus_tweets_sorted14.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted14, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted14.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[45]: 

 

 

# find Lev distance for the user15 

 

dist = np.empty(rus_tweets_sorted15.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted15, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted15.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[58]: 

 

 

# find Lev distance for the user16a 

 

dist = np.empty(rus_tweets_sorted16a.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted16a, repeat=2)):  
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    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted16a.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[59]: 

 

 

# find Lev distance for the user16b 

 

dist = np.empty(rus_tweets_sorted16b.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted16b, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted16b.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[60]: 

 

 

# Lev for 16 

(98.90660460926716 + 99.0721426541758)/2 

 

 

# In[47]: 

 

 

# find Lev distance for the user17 

 

dist = np.empty(rus_tweets_sorted17.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted17, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted17.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[48]: 

 

 

# find Lev distance for the user18 
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dist = np.empty(rus_tweets_sorted18.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted18, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted18.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[49]: 

 

 

# find Lev distance for the user19 

 

dist = np.empty(rus_tweets_sorted19.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted19, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted19.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[50]: 

 

 

# find Lev distance for the user20 

 

dist = np.empty(rus_tweets_sorted20.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted20, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted20.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[51]: 

 

 

# find Lev distance for the user21 

 

dist = np.empty(rus_tweets_sorted21.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted21, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted21.shape[0])) 
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mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[52]: 

 

 

# find Lev distance for the user22 

 

dist = np.empty(rus_tweets_sorted22.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted22, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted22.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[53]: 

 

 

# find Lev distance for the user23 

 

dist = np.empty(rus_tweets_sorted23.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted23, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted23.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[54]: 

 

 

# find Lev distance for the user24 

 

dist = np.empty(rus_tweets_sorted24.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted24, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted24.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[55]: 
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# find Lev distance for the user25 

 

dist = np.empty(rus_tweets_sorted25.shape[0]**2, dtype=int)  

for i, x in enumerate(product(rus_tweets_sorted25, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, rus_tweets_sorted25.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[128]: 

 

 

# Real Tweets Data Set 

real_tweets = pd.read_csv('/Users/Phillip/Downloads/cresci-

2017/datasets_full.csv/genuine_accounts.csv/tweets.csv', na_filter=False) 

 

real_tweets['user_id'] = real_tweets['user_id'].str.replace(' ','') 

real_tweets.fillna('') 

real_tweets.info() 

 

 

# In[90]: 

 

 

# real_tweets['user_id'] = real_tweets['user_id'].astype(str).astype(int) 

 

# real_tweets['user_id'].tail() 

#real_tweets.info() 

 

real_tweets_sorted = real_tweets.sort_values(by=['user_id']) 

 

real_tweets_sorted = real_tweets_sorted['text'] 

real_tweets_sorted = real_tweets_sorted.str.replace(' ','') 

real_tweets_sorted = real_tweets_sorted.str.replace('RT@','') 

 

 

# In[130]: 

 

 

 

 

 

# In[93]: 

31

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018



 

 

real_tweets_sorted.head() 

 

 

# In[94]: 

 

 

real_tweets_sorted1 = real_tweets_sorted[981668:982560] 

real_tweets_sorted2 = real_tweets_sorted[982561:985677] 

real_tweets_sorted3 = real_tweets_sorted[985678:988132] 

real_tweets_sorted4 = real_tweets_sorted[988133:991368] 

real_tweets_sorted5 = real_tweets_sorted[991369:994578] 

real_tweets_sorted6 = real_tweets_sorted[994579:997773] 

real_tweets_sorted7 = real_tweets_sorted[997774:1000994] 

real_tweets_sorted8 = real_tweets_sorted[1000995:1004171] 

real_tweets_sorted9 = real_tweets_sorted[1004172:1007390] 

real_tweets_sorted10 = real_tweets_sorted[1007391:1010510] 

real_tweets_sorted11 = real_tweets_sorted[1010511:1013599] 

real_tweets_sorted12 = real_tweets_sorted[1013600:1013941] 

real_tweets_sorted13 = real_tweets_sorted[1013942:1017137] 

real_tweets_sorted14 = real_tweets_sorted[1017138:1019436] 

real_tweets_sorted15 = real_tweets_sorted[1019437:1022622] 

real_tweets_sorted16 = real_tweets_sorted[1022623:1025845] 

real_tweets_sorted17 = real_tweets_sorted[1025846:1029038] 

real_tweets_sorted18 = real_tweets_sorted[1029039:1032277] 

real_tweets_sorted19 = real_tweets_sorted[1032278:1035441] 

real_tweets_sorted20 = real_tweets_sorted[1035442:1036606] 

real_tweets_sorted21 = real_tweets_sorted[1036607:1039781] 

real_tweets_sorted22 = real_tweets_sorted[1039782:1042953] 

real_tweets_sorted23 = real_tweets_sorted[1042954:1045336] 

real_tweets_sorted24 = real_tweets_sorted[1045337:1045417] 

real_tweets_sorted25 = real_tweets_sorted[1045418:1048574] 

 

 

# In[95]: 

 

 

# find Lev distance for the user #1 

 

dist = np.empty(real_tweets_sorted1.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted1, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted1.shape[0])) 

mean_dist = dist_df.mean() 

mean_dist.mean() 
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# In[96]: 

 

 

# find Lev distance for the user #2 

 

dist = np.empty(real_tweets_sorted2.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted2, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted2.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[97]: 

 

 

# find Lev distance for the user #3 

 

dist = np.empty(real_tweets_sorted3.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted3, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted3.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[121]: 

 

 

# find Lev distance for the user #4 

 

dist = np.empty(real_tweets_sorted4.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted4, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted4.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

33

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018



# In[99]: 

 

 

# find Lev distance for the user #5 

 

dist = np.empty(real_tweets_sorted5.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted5, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted5.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[100]: 

 

 

# find Lev distance for the user #6 

 

dist = np.empty(real_tweets_sorted6.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted6, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted6.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[101]: 

 

 

# find Lev distance for the user #7 

 

dist = np.empty(real_tweets_sorted7.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted7, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted7.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[102]: 
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# find Lev distance for the user #8 

 

dist = np.empty(real_tweets_sorted8.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted8, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted8.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[103]: 

 

 

# find Lev distance for the user #9 

 

dist = np.empty(real_tweets_sorted9.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted9, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted9.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[104]: 

 

 

# find Lev distance for the user #10 

 

dist = np.empty(real_tweets_sorted10.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted10, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted10.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[105]: 

 

 

# find Lev distance for the user #11 
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dist = np.empty(real_tweets_sorted11.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted11, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted11.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[106]: 

 

 

# find Lev distance for the user #12 

 

dist = np.empty(real_tweets_sorted12.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted12, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted12.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[107]: 

 

 

# find Lev distance for the user #13 

 

dist = np.empty(real_tweets_sorted13.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted13, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted13.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[108]: 

 

 

# find Lev distance for the user #13 

 

dist = np.empty(real_tweets_sorted13.shape[0]**2, dtype=int)  
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for i, x in enumerate(product(real_tweets_sorted13, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted13.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[109]: 

 

 

# find Lev distance for the user #14 

 

dist = np.empty(real_tweets_sorted14.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted14, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted14.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[110]: 

 

 

# find Lev distance for the user #15 

 

dist = np.empty(real_tweets_sorted15.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted15, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted15.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[111]: 

 

 

# find Lev distance for the user #16 

 

dist = np.empty(real_tweets_sorted16.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted16, repeat=2)):  

    dist[i] = editdistance.eval(*x) 
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dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted16.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[112]: 

 

 

# find Lev distance for the user #17 

dist = np.empty(real_tweets_sorted17.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted17, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted17.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[113]: 

 

 

# find Lev distance for the user #18 

 

dist = np.empty(real_tweets_sorted18.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted18, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted18.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[114]: 

 

 

# find Lev distance for the user #19 

 

dist = np.empty(real_tweets_sorted19.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted19, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted19.shape[0])) 
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mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[115]: 

 

 

# find Lev distance for the user #20 

 

dist = np.empty(real_tweets_sorted20.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted20, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted20.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[116]: 

 

 

# find Lev distance for the user #21 

 

dist = np.empty(real_tweets_sorted21.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted21, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted21.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[117]: 

 

 

# find Lev distance for the user #22 

 

dist = np.empty(real_tweets_sorted22.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted22, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted22.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 
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# In[118]: 

 

 

# find Lev distance for the user #23 

 

dist = np.empty(real_tweets_sorted23.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted23, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted23.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[119]: 

 

 

# find Lev distance for the user #24 

 

dist = np.empty(real_tweets_sorted24.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted24, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted24.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 

 

 

# In[120]: 

 

 

# find Lev distance for the user #25 

 

dist = np.empty(real_tweets_sorted25.shape[0]**2, dtype=int)  

for i, x in enumerate(product(real_tweets_sorted25, repeat=2)):  

    dist[i] = editdistance.eval(*x) 

 

dist_df = pd.DataFrame(dist.reshape(-1, real_tweets_sorted25.shape[0])) 

 

mean_dist = dist_df.mean() 

mean_dist.mean() 
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# In[123]: 

 

 

os.chdir("/Users/Phillip/Downloads/cresci-2017/datasets_full.csv/") 

os.getcwd() 

os.listdir() 

 

 

# In[124]: 

 

 

# need genuine accounts for support vector machining 

 

real = pd.read_csv('genuine_accounts.csv/users.csv') 

real = real.fillna('') 

real.info() 

 

 

# In[126]: 

 

 

real = real.sort_values(by=['id']) 

real.tail() 

 

 

# In[75]: 

 

 

df = pd.read_csv('social_spambots_2.csv/tweets.csv') 

df = df.fillna('') 

df.info() 

 

 

# In[78]: 

 

 

df = pd.read_csv('social_spambots_2.csv/tweets.csv') 

df = df.fillna('') 

#df['default_profile'].isnull().values.sum() 

 

# need genuine accounts for support vector machining 

 

real = pd.read_csv('genuine_accounts.csv/tweets.csv') 

real = real.fillna('') 

 

# temp. subset for testing SVM 
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# real = real[1:1000] 

 

# fake followers 

fake_followers = pd.read_csv('fake_followers.csv/tweets.csv') 

fake_followers.fillna('') 

 

 

# traditional spambots 

 

trad_spam_1 = pd.read_csv('social_spambots_1.csv/tweets.csv') 

 

 

trad_spam_1 = trad_spam_1.fillna('') 

 

 

# social spambots 

 

social_spam_1 = pd.read_csv('social_spambots_1.csv/tweets.csv') 

social_spam_1 = social_spam_1.fillna('') 

 

social_spam_2 = pd.read_csv('social_spambots_2.csv/tweets.csv') 

social_spam_2 = social_spam_2.fillna('') 

 

 

social_spam_3 = pd.read_csv('social_spambots_3.csv/tweets.csv') 

social_spam_3 = social_spam_3.fillna('') 

 

rus_tweets.fillna('') 

rus_tweets = rus_tweets.replace(np.nan, '', regex=True) 

 

# column detailing if they are a bot 

# will be deleted later for SVM 

real['knownbot'] = 0 

df['knownbot'] = 1 

fake_followers['knownbot'] = 1 

trad_spam_1['knownbot'] = 1 

 

social_spam_1['knownbot'] = 1 

social_spam_2['knownbot'] = 1 

social_spam_3['knownbot'] = 1 

rus_tweets['knownbot'] = 1 

 

#len(real['default_profile']) 

 

 

# In[38]: 
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# combine dataframe. append dataframes. 

 

# combine all social spambots 

#all_trad_spam = pd.concat([trad_spam_1,trad_spam_2,trad_spam_3]) 

 

#all_social_spambots = pd.concat([social_spam_1,social_spam_2,social_spam_3]) 

 

#all_bots = pd.concat([all_social_spambots,fake_followers]) 

 

# df = pd.concat([df,real]) 

 

#df = pd.concat([real, rus_users]) 

 

#len(df['default_profile']) 

 

df = shuffle(df) 

df.info() 

 

 

# In[ ]: 

 

 

# # Average number of Tweets 

# ss1 = social_spam_1['num_hashtags'].mean() 

# ss2 = social_spam_2['num_hashtags'].mean() 

# ss3 = social_spam_3['num_hashtags'].mean() 

# ts1 = trad_spam_1['num_hashtags'].mean() 

# #ts2 = trad_spam_2['num_hashtags'].mean() 

# #ts3 = trad_spam_3['num_hashtags'].mean() 

# r1 = real['num_hashtags'].mean() 

# f1 = fake_followers['num_hashtags'].mean() 

# #rus1 = rus_tweets['num_hashtags'].mean() 

 

 

# sets = [ss1,ss2,ss3,ts1,ts2,ts3,r1,f1] 

 

# # xlabel = ('Social 1', 'Social 2', 'Social 3', 'Traditional 1', 'Real Accounts', 'Fake 

Followers', 'Russian Bots') 

# xlabel = ('Social 1', 'Social 2', 'Social 3', 'Traditional 1', 'Real Accounts', 'Fake 

Followers') 

# ypos = np.arange(len(sets)) 

# amount = [ss1,ss2,ss3,ts1,r1,f1] 

 

# plt.bar(xlabel, sets, align='center', alpha=0.5) 

# plt.xticks(ypos,xlabel,rotation=30) 

# plt.ylabel('Average Number of Favorites') 
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# plt.title('Average Number of Favorites Per Account Per Dataset') 

# plt.show() 

 

 

# In[ ]: 

 

 

# # convert timestamp to datetime format 

 

# # month/day/year hour:minute:second AM 

 

# df['timestamp'] = df['timestamp'].apply(lambda x: 

dt.datetime.strptime(x,'%b%d%Y:%H:%M:%S.%f')) 

 

# # df['Mycol'] = df['Mycol'].apply(lambda x: 

dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f')) 

# df.info() 

 

 

# In[ ]: 

 

 

# # create empty DF and add id  

# score = pd.DataFrame() 

# score['id'] = df['id'] 

 

 

# In[ ]: 

 

 

# #function that will be used for scoring 

 

# # is language english 

# def scoring (row): 

#    if row['lang'] == 'en': 

#       return 1 

#    else: 

#       return 0 

     

# # function is applied 

# df.apply (lambda row: scoring (row),axis=1) 

 

# #output of function applied to rows is assigned to df collumn 

# df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# # no null values in new score collumn (this collumn could be part of a new df) 

# df['score'].isnull().values.sum() 
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# # assigns function output to new df 

# score['lang-en'] = df.apply (lambda row: scoring (row),axis=1) 

 

# coding: utf-8 

 

# In[396]: 

 

 

import pandas as pd 

import numpy as np 

import os 

 

import matplotlib.pyplot as plt 

import Levenshtein as Lev 

from fuzzywuzzy import fuzz 

from fuzzywuzzy import process 

from sklearn.utils import shuffle 

import datetime as dt 

 

from mlxtend.plotting import plot_decision_regions 

from itertools import product 

 

 

# In[397]: 

 

 

# Russian Data Set 

rus_users = pd.read_csv('/Users/Phillip/Downloads/RussianData/users.csv', 

na_filter=False) 

rus_users.fillna('') 

#rus_users.rename(columns={}) 

#rus_users['knownbot'] = 1 

#list(rus_users) 

 

rus_users[['id','followers_count','statuses_count','favourites_count','friends_count']] = 

rus_users[['id','followers_count','statuses_count','favourites_count','friends_count']].ap

ply(pd.to_numeric) 

rus_users['id'] = rus_users['id'].fillna(0).astype(int) 

rus_users['followers_count'] = rus_users['followers_count'].fillna(0).astype(int) 

rus_users['statuses_count'] = rus_users['statuses_count'].fillna(0).astype(int) 

rus_users['favourites_count'] = rus_users['favourites_count'].fillna(0).astype(int) 

rus_users['friends_count'] = rus_users['friends_count'].fillna(0).astype(int) 

#rus_users = rus_users.replace(np.nan, '', regex=True) 

#rus_users[('followers_count','statuses_count','favourites_count','friends_count')].appl

ymap(int) 

rus_users.fillna('') 
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#rus_users = rus_users.replace(np.nan, '', regex=True) 

#int(rus_users['followers_count']) 

 

#rus_users.shape 

rus_users.info() 

 

 

# In[398]: 

 

 

os.chdir("/Users/Phillip/Downloads/cresci-2017/datasets_full.csv/") 

os.getcwd() 

os.listdir() 

 

 

# In[399]: 

 

 

df = pd.read_csv('social_spambots_1.csv/users.csv') 

df.info() 

 

 

# In[400]: 

 

 

df = df.fillna('') 

df.ix[:5,:20] 

 

 

# In[401]: 

 

 

list(df) 

df.info() 

 

 

# In[402]: 

 

 

df['default_profile'].isnull().values.sum() 

len(df['default_profile']) 

df.head() 

 

 

# In[403]: 
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# need genuine accounts for support vector machining 

 

real = pd.read_csv('genuine_accounts.csv/users.csv') 

real = real.fillna('') 

 

# temp. subset for testing SVM 

 

# real = real[1:1000] 

 

# fake followers 

fake_followers = pd.read_csv('fake_followers.csv/users.csv') 

fake_followers.fillna('') 

 

 

# traditional spambots 

 

trad_spam_1 = pd.read_csv('traditional_spambots_1.csv/users.csv') 

trad_spam_2 = pd.read_csv('traditional_spambots_2.csv/users.csv') 

trad_spam_3 = pd.read_csv('traditional_spambots_3.csv/users.csv') 

#trad_spam_4 = pd.read_csv('social_spambots_4.csv/users.csv') 

 

trad_spam_1 = trad_spam_1.fillna('') 

trad_spam_2 = trad_spam_2.fillna('') 

trad_spam_3 = trad_spam_3.fillna('') 

#trad_spam_4 = trad_spam_4.fillna('') 

 

# social spambots 

 

social_spam_1 = pd.read_csv('social_spambots_1.csv/users.csv') 

social_spam_1 = social_spam_1.fillna('') 

 

social_spam_2 = pd.read_csv('social_spambots_2.csv/users.csv') 

social_spam_2 = social_spam_2.fillna('') 

 

 

social_spam_3 = pd.read_csv('social_spambots_3.csv/users.csv') 

social_spam_3 = social_spam_3.fillna('') 

 

rus_users.fillna('') 

rus_users = rus_users.replace(np.nan, '', regex=True) 

 

# column detailing if they are a bot 

# will be deleted later for SVM 

real['knownbot'] = 0 

df['knownbot'] = 1 

fake_followers['knownbot'] = 1 

trad_spam_1['knownbot'] = 1 
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trad_spam_2['knownbot'] = 1 

trad_spam_3['knownbot'] = 1 

#trad_spam_4['knownbot'] = 1 

social_spam_1['knownbot'] = 1 

social_spam_2['knownbot'] = 1 

social_spam_3['knownbot'] = 1 

rus_users['knownbot'] = 1 

 

len(real['default_profile']) 

 

 

 

 

# In[404]: 

 

 

# Number of Twitter Accounts Per Dataset 

 

ss1 = len(social_spam_1) 

ss2 = len(social_spam_2) 

ss3 = len(social_spam_3) 

ts1 = len(trad_spam_1) 

ts2 = len(trad_spam_2) 

ts3 = len(trad_spam_3) 

r1 = len(real) 

f1 = len(fake_followers) 

rus1 = len(rus_users) 

 

# # Average number of followers 

# ss1 = social_spam_1['followers_count'].mean() 

# ss2 = social_spam_2['followers_count'].mean() 

# ss3 = social_spam_3['followers_count'].mean() 

# ts1 = trad_spam_1['followers_count'].mean() 

# ts2 = trad_spam_2['followers_count'].mean() 

# ts3 = trad_spam_3['followers_count'].mean() 

# r1 = real['followers_count'].mean() 

# f1 = fake_followers['followers_count'].mean() 

# rus1 = rus_users['followers_count'].mean() 

 

# # Average number of friends 

# ss1 = social_spam_1['friends_count'].mean() 

# ss2 = social_spam_2['friends_count'].mean() 

# ss3 = social_spam_3['friends_count'].mean() 

# ts1 = trad_spam_1['friends_count'].mean() 

# ts2 = trad_spam_2['friends_count'].mean() 

# ts3 = trad_spam_3['friends_count'].mean() 

# r1 = real['friends_count'].mean() 
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# f1 = fake_followers['friends_count'].mean() 

# rus1 = rus_users['friends_count'].mean() 

 

# # Average number of Tweets 

# ss1 = social_spam_1['statuses_count'].mean() 

# ss2 = social_spam_2['statuses_count'].mean() 

# ss3 = social_spam_3['statuses_count'].mean() 

# ts1 = trad_spam_1['statuses_count'].mean() 

# ts2 = trad_spam_2['statuses_count'].mean() 

# ts3 = trad_spam_3['statuses_count'].mean() 

# r1 = real['statuses_count'].mean() 

# f1 = fake_followers['statuses_count'].mean() 

# rus1 = rus_users['statuses_count'].mean() 

 

# # Average number of Favorites Per Dataset 

# ss1 = social_spam_1['favourites_count'].mean() 

# ss2 = social_spam_2['favourites_count'].mean() 

# ss3 = social_spam_3['favourites_count'].mean() 

# ts1 = trad_spam_1['favourites_count'].mean() 

# ts2 = trad_spam_2['favourites_count'].mean() 

# ts3 = trad_spam_3['favourites_count'].mean() 

# r1 = real['favourites_count'].mean() 

# f1 = fake_followers['favourites_count'].mean() 

# rus1 = rus_users['favourites_count'].mean() 

 

 

sets = [ss1,ss2,ss3,ts1,ts2,ts3,r1,f1,rus1] 

 

xlabel = ('Social 1', 'Social 2', 'Social 3', 'Traditional 1', 'Traditional 2', 'Traditional 3', 

'Real Accounts', 'Fake Followers', 'Russian Bots') 

ypos = np.arange(len(sets)) 

amount = [ss1,ss2,ss3,ts1,ts2,ts3,r1,f1,rus1] 

 

plt.bar(xlabel, sets, align='center', alpha=0.5) 

plt.xticks(ypos,xlabel,rotation=30) 

# plt.ylabel('Average Number of Followers') 

# plt.title('Average Number of Followers Per Account Per Dataset') 

plt.ylabel('Number of Twitter Accounts') 

plt.title(' Number of Twitter Accounts Per Dataset') 

plt.show() 

 

print(sets) 
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# In[405]: 

 

 

# combine dataframe. append dataframes. 

 

# combine all social spambots 

all_trad_spam = pd.concat([trad_spam_1,trad_spam_2,trad_spam_3]) 

 

all_social_spambots = pd.concat([social_spam_1,social_spam_2,social_spam_3]) 

 

all_bots = pd.concat([all_trad_spam,all_social_spambots,fake_followers]) 

 

# df = pd.concat([df,real]) 

 

df = pd.concat([real, all_bots]) 

 

len(df['default_profile']) 

df.head() 

 

 

# In[406]: 

 

 

# Prepare of Levenshtein Distance 

 

LevD_Rus = 

[87.22685185185186,75.6484375,93.87158203125,95.54127100073046,84.86111111

11111,88.12097304404995,85.50719999999995,0.0,93.0051775147929,92.93727330

653853,92.25777777777778,87.29300567107751,78.875,88.66128729592792,98.989

37363172149,85.52549427679502,88.27911111111112,92.20204768105165,94.7046

4852607702,34.5,87.5246913580247,76.22222222222223] 

 

LevD_Real = 

[65.56188793259464,68.06269743639605,80.99069695768078,35.81521735079752,

41.59524071487558,54.80695468844404,69.17062343273791,77.40079028640484,6

7.02438312151091,69.26917965276283,55.803792341740724,59.65946285291664,7

0.02652325009018,74.53508708143696,82.96344570432927,72.94090538318754,75

.49669423401855,86.23952096036828,59.65265730087915,57.51488084694314,56.

52436582043217,59.63556497551856,77.69237444844183,87.1303125,81.64039747

253511] 

 

# sort real dataset 

 

real = real.sort_values(by=['screen_name']) 

real_Lev = real.tail(25) 

real_Lev['LevD'] = LevD_Real 
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# sort Russian bots dataset 

 

rus_users = rus_users.sort_values(by=['screen_name']) 

rus_users_Lev = rus_users.iloc[3:28] 

rus_users_Lev = rus_users_Lev.drop(rus_users_Lev.index[18]) 

rus_users_Lev = rus_users_Lev.drop(rus_users_Lev.index[16]) 

rus_users_Lev = rus_users_Lev.drop(rus_users_Lev.index[6]) 

rus_users_Lev['LevD'] = LevD_Rus 

 

df = pd.concat([real_Lev, rus_users_Lev]) 

 

real_Lev['LevD'].describe() 

 

 

# In[407]: 

 

 

df = shuffle(df) 

df.head() 

 

 

# In[408]: 

 

 

#function that will be used for scoring 

 

# is language english 

def scoring (row): 

   if row['lang'] == 'en': 

      return 1 

   else: 

      return 0 

 

 

# In[409]: 

 

 

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 
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# In[410]: 

 

 

# create empty DF and add id  

score = pd.DataFrame() 

score['id'] = df['id'] 

 

# assigns function output to new df 

score['lang-en'] = df.apply (lambda row: scoring (row),axis=1) 

 

 

# In[411]: 

 

 

score['id'] 

 

 

# In[412]: 

 

 

# has profile image.  

# change from using profile_banner_url 

 

def scoring (row): 

   if row['profile_image_url'] == '': 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['profile_pic'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['profile_pic'].tail() 

 

 

# In[413]: 
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# has screen name.  

# change from screen_name to name. screen_name = @handle. name: can be 

changed, not required.  

 

def scoring (row): 

   if row['name'] == '': 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['has_screen_name'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['has_screen_name'].head() 

 

 

# In[414]: 

 

 

# has 30 followers 

 

def scoring (row): 

   if row['followers_count'] < 30: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['30followers'] = df.apply (lambda row: scoring (row),axis=1) 
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score['30followers'].head() 

 

 

# In[415]: 

 

 

# is geolocalized 

 

def scoring (row): 

   if row['geo_enabled'] == '': 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['geoloc'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['geoloc'].head() 

 

 

# In[416]: 

 

 

# profile banner contains a link ('http') from profile_banner_url 

# change to if the description contains 

 

def scoring (row): 

   if row['profile_banner_url'] == '': 

      return 0 

   else: 

      return 1 

     

# def scoring (row): 

#    if 'http' not in row['description']: 

#       return 0 

#    elif row['description'] == '': 

#       return 1 
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#    else: 

#       return 1 

 

# df['description'] = df['description'] 

 

# def scoring (row): 

#    if row['description'] == ('http'): 

#       return 0 

#    else: 

#       return 1 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['banner_link'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['banner_link'].head() 

 

 

# In[417]: 

 

 

# has done 50 tweets 

 

def scoring (row): 

   if row['statuses_count'] > 50: 

      return 0 

   else: 

      return 1 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 
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score['50tweets'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['50tweets'].head() 

 

 

# In[418]: 

 

 

# 2* num followers >= # of friends 

 

def scoring (row): 

   if 2*row['followers_count'] >= row['friends_count']: 

      return 0 

   else: 

      return 1 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['twice_num_followers'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['twice_num_followers'].head() 

 

 

# In[419]: 

 

 

# does not have 1000s of friends, spambot 

 

def scoring (row): 

   if row['friends_count'] > 1000: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 
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# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['1000friends'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['1000friends'].head() 

 

 

# In[420]: 

 

 

# sent less than 20 tweets, spambot 

 

def scoring (row): 

   if row['statuses_count'] < 20: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['1000friends'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['1000friends'].head() 

 

 

# In[421]: 

 

 

# egg avatar, default profile image 

 

def scoring (row): 

   if row['default_profile_image'] == '': 

      return 0 

   else: 

      return 1 
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# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['profile_pic'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['profile_pic'].head() 

 

 

# In[422]: 

 

 

# Never tweeted 

 

def scoring (row): 

   if row['statuses_count'] == 0: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['NeverTweeted'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['NeverTweeted'].head() 

 

 

# In[423]: 

 

 

# 50:1 friends/followers 

 

def scoring (row): 
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   if 50*row['followers_count'] <= row['friends_count']: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['fifty_FriendsFollowersRatio'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['fifty_FriendsFollowersRatio'].head() 

 

 

# In[424]: 

 

 

# 100:1 friends/followers 

 

def scoring (row): 

   if 100*row['followers_count'] <= row['friends_count']: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['hundred_FriendsFollowersRatio'] = df.apply (lambda row: scoring 

(row),axis=1) 

 

score['hundred_FriendsFollowersRatio'].head() 
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# In[425]: 

 

 

# Beginning of next draft... 

 

# profile contains a description 

 

def scoring (row): 

   if row['description'] == '': 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['has_description'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['has_description'].head() 

 

 

# In[426]: 

 

 

# known bot 

 

def scoring (row): 

   if row['knownbot'] == 1: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 
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# assigns function output to new df 

score['knownbot'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['knownbot'].head() 

 

 

# In[427]: 

 

 

# Levenshtein Distance less than 30 

 

def scoring (row): 

   if row['LevD'] < 30: 

      return 1 

   else: 

      return 0 

     

# function is applied 

df.apply (lambda row: scoring (row),axis=1) 

 

#output of function applied to rows is assigned to df collumn 

df['score'] = df.apply (lambda row: scoring (row),axis=1) 

 

# no null values in new score collumn (this collumn could be part of a new df) 

df['score'].isnull().values.sum() 

 

# assigns function output to new df 

score['Levenshtein'] = df.apply (lambda row: scoring (row),axis=1) 

 

score['Levenshtein'].head() 

 

 

# In[428]: 

 

 

score.shape 

 

 

# In[429]: 

 

 

 

score.describe() 

 

 

# In[430]: 

61

Efthimion et al.: Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots

Published by SMU Scholar, 2018



 

 

# Following code is based from Eric Larson code for his Data Mining Class 

# 

https://github.com/eclarson/DataMiningNotebooks/blob/master/04.%20Logits%20and

%20SVM.ipynb 

 

from sklearn.model_selection import ShuffleSplit 

 

# we want to predict the X and y data as follows: 

if 'knownbot' in score: 

    y = score['knownbot'].values # get the labels we want 

    del score['knownbot'] # get rid of the class label 

    X = score.values # use everything else to predict! 

 

    ## X and y are now numpy matrices, by calling 'values' on the pandas data 

frames we 

    #    have converted them into simple matrices to use with scikit learn 

     

     

# to use the cross validation object in scikit learn, we need to grab an instance 

#    of the object and set it up. This object will be able to split our data into  

#    training and testing splits 

num_cv_iterations = 3 

num_instances = len(y) 

cv_object = ShuffleSplit(n_splits=num_cv_iterations, 

                         test_size  = 0.2) 

                          

print(cv_object) 

 

 

# In[431]: 

 

 

# run logistic regression and vary some parameters 

from sklearn.linear_model import LogisticRegression 

from sklearn import metrics as mt 

 

# first we create a reusable logisitic regression object 

#   here we can setup the object with different learning parameters and constants 

lr_clf = LogisticRegression(penalty='l2', C=1.0, class_weight=None) # get object 

 

# now we can use the cv_object that we setup before to iterate through the  

#    different training and testing sets. Each time we will reuse the logisitic 

regression  

#    object, but it gets trained on different data each time we use it. 
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iter_num=0 

# the indices are the rows used for training and testing in each iteration 

for train_indices, test_indices in cv_object.split(X,y):  

    # I will create new variables here so that it is more obvious what  

    # the code is doing (you can compact this syntax and avoid duplicating memory, 

    # but it makes this code less readable) 

    X_train = X[train_indices] 

    y_train = y[train_indices] 

     

    X_test = X[test_indices] 

    y_test = y[test_indices] 

     

    # train the reusable logisitc regression model on the training data 

    lr_clf.fit(X_train,y_train)  # train object 

    y_hat = lr_clf.predict(X_test) # get test set precitions 

 

    # now let's get the accuracy and confusion matrix for this iterations of 

training/testing 

    acc = mt.accuracy_score(y_test,y_hat) 

    conf = mt.confusion_matrix(y_test,y_hat) 

    print("====Iteration",iter_num," ====") 

    print("accuracy", acc ) 

    print("confusion matrix\n",conf) 

    iter_num+=1 

     

# Also note that every time you run the above code 

#   it randomly creates a new training and testing set,  

#   so accuracy will be different each time 

 

 

# In[432]: 

 

 

# interpret the weights 

 

# iterate over the coefficients 

weights = lr_clf.coef_.T # take transpose to make a column vector 

variable_names = score.columns 

for coef, name in zip(weights,variable_names): 

    print(name, 'has weight of', coef[0]) 

     

# does this look correct? 

 

 

# In[433]: 
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from sklearn.preprocessing import StandardScaler 

 

# we want to normalize the features based upon the mean and standard deviation of 

each column.  

# However, we do not want to accidentally use the testing data to find out the mean 

and std (this would be snooping) 

# to Make things easier, let's start by just using whatever was last stored in the 

variables: 

##    X_train , y_train , X_test, y_test (they were set in a for loop above) 

 

# scale attributes by the training set 

scl_obj = StandardScaler() 

scl_obj.fit(X_train) # find scalings for each column that make this zero mean and unit 

std 

# the line of code above only looks at training data to get mean and std and we can 

use it  

# to transform new feature data 

 

X_train_scaled = scl_obj.transform(X_train) # apply to training 

X_test_scaled = scl_obj.transform(X_test) # apply those means and std to the test set 

(without snooping at the test set values) 

 

# train the model just as before 

lr_clf = LogisticRegression(penalty='l2', C=0.05) # get object, the 'C' value is less 

(can you guess why??) 

lr_clf.fit(X_train_scaled,y_train)  # train object 

 

y_hat = lr_clf.predict(X_test_scaled) # get test set precitions 

 

acc = mt.accuracy_score(y_test,y_hat) 

conf = mt.confusion_matrix(y_test,y_hat) 

print('accuracy:', acc ) 

print(conf ) 

 

# sort these attributes and spit them out 

zip_vars = zip(lr_clf.coef_.T,score.columns) # combine attributes 

zip_vars = sorted(zip_vars) 

for coef, name in zip_vars: 

    print(name, 'has weight of', coef[0]) # now print them out 

 

 

# In[434]: 

 

 

# now let's make a pandas Series with the names and values, and plot them 

from matplotlib import pyplot as plt 

get_ipython().magic('matplotlib inline') 
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plt.style.use('ggplot') 

 

 

weights = pd.Series(lr_clf.coef_[0],index=score.columns) 

weights.plot(kind='bar') 

plt.show() 

 

 

# In[435]: 

 

 

from sklearn.preprocessing import StandardScaler 

# we want to normalize the features based upon the mean and standard deviation of 

each column.  

# However, we do not want to accidentally use the testing data to find out the mean 

and std (this would be snooping) 

 

from sklearn.pipeline import Pipeline 

# you can apply the StandardScaler function inside of the cross-validation loop  

#  but this requires the use of PipeLines in scikit.  

#  A pipeline can apply feature pre-processing and data fitting in one compact 

notation 

#  Here is an example! 

 

std_scl = StandardScaler() 

lr_clf = LogisticRegression(penalty='l2', C=0.05)  

 

# create the pipline 

piped_object = Pipeline([('scale', std_scl),  # do this 

                         ('logit_model', lr_clf)]) # and then do this 

 

weights = [] 

# run the pipline cross validated 

for iter_num, (train_indices, test_indices) in enumerate(cv_object.split(X,y)): 

    piped_object.fit(X[train_indices],y[train_indices])  # train object 

    # it is a little odd getting trained objects from a  pipeline: 

    weights.append(piped_object.named_steps['logit_model'].coef_[0]) 

     

 

weights = np.array(weights) 

 

 

# In[436]: 

 

 

import plotly 

plotly.offline.init_notebook_mode() # run at the start of every notebook 
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error_y=dict( 

            type='data', 

            array=np.std(weights,axis=0), 

            visible=True 

        ) 

 

graph1 = {'x': score.columns, 

          'y': np.mean(weights,axis=0), 

    'error_y':error_y, 

       'type': 'bar'} 

 

fig = dict() 

fig['data'] = [graph1] 

fig['layout'] = {'title': 'Logistic Regression Weights, with error bars'} 

 

plotly.offline.iplot(fig) 

 

 

# In[437]: 

 

 

 

# # not sure if needed so haven't fixed yet 

 

# Xnew = df_imputed[['Age','Pclass','IsMale']].values 

 

# weights = [] 

# # run the pipline corssvalidated 

# for iter_num, (train_indices, test_indices) in enumerate(cv_object.split(Xnew,y)): 

#     piped_object.fit(Xnew[train_indices],y[train_indices])  # train object 

#     weights.append(piped_object.named_steps['logit_model'].coef_[0]) 

     

# weights = np.array(weights) 

 

# error_y=dict( 

#             type='data', 

#             array=np.std(weights,axis=0), 

#             visible=True 

#         ) 

 

# graph1 = {'x': ['Age','Pclass','IsMale'], 

#           'y': np.mean(weights,axis=0), 

#     'error_y':error_y, 

#        'type': 'bar'} 

 

# fig = dict() 
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# fig['data'] = [graph1] 

# fig['layout'] = {'title': 'Logistic Regression Weights, with error bars'} 

 

# plotly.offline.iplot(fig) 

 

 

# In[438]: 

 

 

# okay, so run through the cross validation loop and set the training and testing 

variable for one single iteration 

for train_indices, test_indices in cv_object.split(X,y):  

    # I will create new variables here so that it is more obvious what  

    # the code is doing (you can compact this syntax and avoid duplicating memory, 

    # but it makes this code less readable) 

    X_train = X[train_indices] 

    y_train = y[train_indices] 

     

    X_test = X[test_indices] 

    y_test = y[test_indices] 

     

X_train_scaled = scl_obj.transform(X_train) # apply to training 

X_test_scaled = scl_obj.transform(X_test) 

 

 

# In[439]: 

 

 

score.head() 

 

 

# In[440]: 

 

 

# lets investigate SVMs on the data and play with the parameters and kernels 

from sklearn.svm import SVC 

 

# train the model just as before 

svm_clf = SVC(C=0.5, kernel='rbf', degree=3, gamma='auto') # get object 

svm_clf.fit(X_train_scaled, y_train)  # train object 

 

y_hat = svm_clf.predict(X_test_scaled) # get test set precitions 

 

acc = mt.accuracy_score(y_test,y_hat) 

conf = mt.confusion_matrix(y_test,y_hat) 

print('accuracy:', acc ) 

print(conf) 
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# In[441]: 

 

 

# SVM Without logistic regression 

svm_clf = SVC(C=0.5, kernel='rbf', degree=3, gamma='auto') # get object 

svm_clf.fit(X, y)  # train object 

y_hat = svm_clf.predict(X) # get test set precitions 

acc = mt.accuracy_score(y,y_hat) 

conf = mt.confusion_matrix(y,y_hat) 

print('accuracy:', acc ) 

print(conf) 

 

 

# In[363]: 

 

 

score.head() 

 

 

# In[364]: 

 

 

# look at the support vectors 

print(svm_clf.support_vectors_.shape) 

print(svm_clf.support_.shape) 

print(svm_clf.n_support_ ) 

 

 

# In[365]: 

 

 

# if using linear kernel, these make sense to look at (not otherwise, why?) 

print(svm_clf.coef_) 

weights = pd.Series(svm_clf.coef_[0],index=df_imputed.columns) 

weights.plot(kind='bar') 

 

 

# In[366]: 

 

 

# Now let's do some different analysis with the SVM and look at the instances that 

were chosen as support vectors 

 

# now lets look at the support for the vectors and see if we they are indicative of 

anything 
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# grabe the rows that were selected as support vectors (these are usually instances that 

are hard to classify) 

 

# make a dataframe of the training data 

score_tested_on = score.iloc[train_indices] # saved from above, the indices chosen for 

training 

# now get the support vectors from the trained model 

score_support = score_tested_on.iloc[svm_clf.support_,:] 

 

score_support['knownbot'] = y[svm_clf.support_] # add back in the 'Survived' 

Column to the pandas dataframe 

score['knownbot'] = y # also add it back in for the original data 

score_support.info() 

 

 

# In[367]: 

 

 

# now lets see the statistics of these attributes 

from pandas.tools.plotting import boxplot 

 

# group the original data and the support vectors 

df_grouped_support = score_support.groupby(['knownbot']) 

df_grouped = score.groupby(['knownbot']) 

 

# plot KDE of Different variables 

vars_to_plot = ['banner_link','profile_pic','has_screen_name','30followers'] 

 

for v in vars_to_plot: 

    plt.figure(figsize=(10,4)) 

    # plot support vector stats 

    plt.subplot(1,2,1) 

    ax = df_grouped_support[v].plot.kde()  

    plt.legend(['real','bot']) 

    plt.title(v+' (Instances chosen as Support Vectors)') 

     

    # plot original distributions 

    plt.subplot(1,2,2) 

    ax = df_grouped[v].plot.kde()  

    plt.legend(['real','bot']) 

    plt.title(v+' (Original)') 

     

 

 

# In[145]: 
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# Levenshtein Tests 

 

Lev.distance('Phillip Efthimion', '@RTscott_payne: Phillip Efthimion') 

 

 

# In[699]: 

 

 

tweets = pd.read_csv('social_spambots_2.csv/tweets.csv') 

tweets = tweets.fillna('') 

tweets['text'] = tweets['text'].astype(str) 

tweets.info() 

 

rus_users['followers_count'] = rus_users['followers_count'].fillna(0).astype(int) 

 

 

# In[712]: 

 

 

choices = tweets['text'][3:20] 

process.extract(tweets['text'][2], choices, limit=2) 

#process.extractOne(tweets['text'][1], choices) 
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