
DeBot: Twitter Bot Detection via Warped Correlation
Nikan Chavoshi, Hossein Hamooni, Abdullah Mueen

Department of Computer Science, University of New Mexico
{chavoshi, hamooni, mueen}@unm.edu

Abstract—We develop a warped correlation finder to identify
correlated user accounts in social media websites such as Twitter.
The key observation is that humans cannot be highly synchronous
for a long duration; thus, highly synchronous user accounts
are most likely bots. Existing bot detection methods are mostly
supervised, which requires a large amount of labeled data to
train, and do not consider cross-user features. In contrast, our bot
detection system works on activity correlation without requiring
labeled data. We develop a novel lag-sensitive hashing technique
to cluster user accounts into correlated sets in near real-time.
Our method, named DeBot, detects thousands of bots per day
with a 94% precision and generates reports online everyday. In
September 2016, DeBot has accumulated about 544,868 unique
bots in the previous one year.
We compare our detection technique with per-user techniques
and with Twitter’s suspension system. We observe that some bots
can avoid Twitter’s suspension mechanism and remain active for
months, and, more alarmingly, we show that DeBot detects bots
at a rate higher than the rate Twitter is suspending them.

I. INTRODUCTION

Social media websites allow users to communicate and share
ideas. Automated accounts, called bots, abuse social media by
posting unethical content [1], supporting sponsored activities
[12], and selling accounts [17]. Social media sites, like Twitter,
frequently suspend abusive bots [19]. However, current bot
detection methods consider accounts independent of each other
(i.e. per-user detection), and are mostly supervised [20][8].
We propose a novel unsupervised approach that identifies bots
using correlated user activities. Figure 1 shows two Twitter
accounts who do not follow each other but are correlated
in tweeting activities. More examples of correlated accounts
and a video capture of two correlated accounts are available
in [2]. An analysis of significance of correlation in detecting
bots is published in [4]. In this paper, we describe the DeBot
system architecture and experimentally compare bot detection
performance with respect to existing per-user methods.

On the data mining front, we develop a system called
DeBot which correlates millions of users in near real-time
to identify bot accounts. Traditional correlation coefficients
such as Pearson’s are non-elastic and are not suitable for
Twitter activity time series because of warping induced by
various factors: bot controllers, network delays, and internal
processing delays in Twitter. An example of warping in activity
time series is shown in Figure 1(bottom), where two users,
alan26offical and FiIosofei, tweeted and retweeted
many identical pairs of tweets with exactly ten seconds of lag
and occasional warping. We allow time-warping by calculating
warped correlation using the Dynamic Time Warping (DTW)
distance for time series [10]. In our example, the warped

0

1

2

40 Seconds

Alan
Filosofei

Time

Warping

Fig. 1. (top) Two highly correlated Twitter accounts: Alan (left) and Filosofei
(right). (bottom) Six-minutes of correlated activities from Alan and Filosofei.

correlation between the two users is 0.99, which is much higher
than cross-correlation (0.72) and Pearson’s correlation (0.07).
To perform a large number of pair-wise warped correlation
calculations efficiently, we develop a lag-sensitive hashing
technique which hashes the users of the tweets into buckets
of suspiciously correlated users. We show that lag-sensitive
hashing is advantageous over regular random projection-based
hashing in capturing warping correlations. The system then
validates the correlations between the suspected users with
account-specific listeners and outputs the valid bots. Our
system collects tweets from the Twitter API at 48 tweets
per seconds, which is the maximum rate allowed, and reports
correlated accounts in daily batches.

Our contribution in this work is mainly twofold: developing
the warped correlation finder and using this finder to detect
bots. Specifically:
• We develop a near real-time system, DeBot, which is the

first (to our knowledge) unsupervised method to detect
bots in social media. Our system detects more bots than
existing supervised techniques.

• We develop a novel lag-sensitive hashing technique to
quickly group correlated users based on their warping
correlations. This allows us to cross-match millions of
activity series under time warping, which has never been
attempted before.

• We empirically show that DeBot has 94% precision and
is able to detect bots that other methods fail to spot. We
find that bots can be functionally grouped and that their
number is growing at a high rate.

The rest of the paper is organized as follows: We start with a
quick background on correlation computation in Section II. We
describe our core techniques in Section III, including the never-
ending correlation tracker and bot clustering algorithm. We
perform a comprehensive evaluation of our method in Section
IV and finally conclude in Section V. An expanded version of
our paper is available in [2] containing more experiments and
discussion of related work.

II. BACKGROUND AND NOTATION

The activity signal of a user in social media consists of all
the actions the user performs in a sequence of observations.
Actions include posting, sharing, liking, tweeting, retweeting,
and deleting. The sequence of timestamps of the activities
of a user-account (or simply, a user) typically forms a time
series with zero values indicating no action, and occasional
spikes representing number of actions in that specific second.
Throughout the paper, we assume a one-second sampling rate,
though the method does not have any specific sparsity or
sampling rate requirements. We define the problem we solve
as follows.

Problem: Find warped-correlated groups of users from
activity signals at every T hours.

The core of the above problem is comparing pairs of users
to determine correlated groups, which is an unsupervised,
pair-wise (i.e. quadratic) matching process. We first define
terms and functions that provide necessary background for the
algorithm.

Correlation: To capture users with highly synchronous post-
ing activities, the correlation coefficient between two activity
time series is a strong indicator. There are several measures of
correlation. The most commonly used coefficient is Pearson’s
coefficient. For a time series x and y of length m, Pearson’s
correlation coefficient can be defined using the Euclidean
distance between z-normalized time series x̂ and ŷ [13].

C(x, y) = 1− d2(x̂,ŷ)
2m =

∑
xy−mµxµy

mσxσy

Cross-correlation: Cross-correlation between two signals
produces the correlation coefficients at all possible lags. For
two signals x and y of length m, cross-correlation takes
O(m logm) time to compute 2m − 1 coefficients at all lags.
For τ ∈ [−m,m], a discrete version of cross-correlation ρxy
is defined for integer lag τ as follows,

ρxy(τ) =

{
C(x1:m−τ , yτ+1:m) , τ ≥ 0
C(x|τ |+1:m, y1:m−|τ |) , τ < 0

Here the : operator is used to represent an increment-by-one
sequence. Note that ρxy(τ) = ρyx(−τ).

Typically, for large lag (τ), cross-correlation is meaningless
for lack of data. In reality, every domain has a range of
interesting lags.

Dynamic Time Warping: Correlation can capture high
synchronicity among users, however, real bots often show

warping. Dynamic time warping (DTW) distance is a well-
studied distance measure for time series data mining. DTW
allows signals to warp against one another, and constrained
DTW allows warping within a window of w samples. Similar
to lag in cross-correlation, the constraint window (w) for bot
detection should not be more than a few seconds.

Warped Correlation: We extend the notion of warping to
correlation. If x and y are z-normalized, DTW distance can be
converted to a warped correlation measure with a range of [-
1,1]. If the number of squared errors that are added to obtain a
distance (i.e. the path length), is P then the warped correlation
is defined as below.

wC(x, y) = 1− DTW 2(x̂, ŷ)

2P

The finite range of warped correlation is useful in measuring
the significance of a match. A very strong warped correlation
of 0.995 indicates almost identical behavior from two users.
In this paper, we use a threshold of 0.995 warped correlation
to identify bots.

Random Projection: Random projection has been used
in high dimensional K-nearest neighbor search for over a
decade [3]. Random projection has also been shown to work
for time series similarity search in real time [6]. The key
idea is to project each high dimensional time series on k
random directions. By Johnson-Lindenstrauss lemma, it is
probabilistically guaranteed that the points that are similar
in the high dimensional space will be close/similar in the
projected space, and that dissimilar points will be far/dissimilar
[3]. In this project, we use cross-correlation-based random
projection. Simply put, we generate one random vector and
rotate the dimensions in both clockwise and anti-clockwise
manners to produce the remaining random vectors.

III. DEBOT CORRELATION FINDER

A. DeBot Architecture
In this section, we describe the architecture of the DeBot

system which detects bots every T hours. The system consists
of four components which are shown in Figure 2.

The four components of the process are: collector, indexer,
listener, and validator. The collector collects tweets that
match with a certain set of keywords for T hours using the
filter method in the API. The matching process in the
Twitter API is quoted from the Twitter’s developer’s guide
for clarity. “The text of the Tweet and some entity fields are
considered for matches. Specifically, the text attribute of the
Tweet, expanded url and display url for links and media, text
for hashtags, and screen name for user mentions are checked
for matches.” The collector forms the time series of the number
of activities at every second for all of the user-accounts. The
collector filters out users with just one activity, as correlating
one activity is meaningless. The collector then passes the time
series to the indexer.

Note that, as we are using the filter method, we may
not receive all the activities of a given user in the T hour
period. This clearly challenges the efficacy of our method, as
subsampled time series may add false negatives. Even though

U3

U1

U2

U4

Un

Collector

Keyword
swarmapp

https-www-@
Youtube
instagram

Indexer U1

×3a

b

c

d

e

f

g

U5
×3

U6

×2
U2

×2
U9

×3

U1
×1

h

U8
×1

U3

×1

U7
×1

U2
×5

U3
×1

U4
×1

U7
×1

U1
×3

U2
×3

U5
×3

U9
×1

U3
×1

U5
×1

U6
×2

U3

×2
U8

×3

U3
×1

U4
×2

U7
×1 U8

×2
U9

×3

U8
×1 U1

U5

U9

U2

Listener

Validator

U9

U1

U5

U2

Hash Table

U5 U9 U1 U2

Fig. 2. Four phases of our bot detection process. The system takes a stream of activities (e.g. Twitter Firehose) as input and produces groups of correlated
users in a pipelined manner. Collision scenario: Assume w = 12, then each user is hashed into buckets (a to h) 25 times. The number of occurrences of a user
is denoted by the superscript. We need bw

4
c=3 occurrences of a user in the same bucket to qualify, e.g. U2 is a qualified user in bucket d. Qualified users are

marked with green ellipses. However, bucket d is not a qualified bucket as it does not have three qualified users. Buckets a and e are qualified. Thus from the
hash table, we extract suspicious users: U1, U5, U9, and U2 which are circled with solid line.

we may have false negatives, our method outperforms existing
bot detection techniques by far (see Section IV). Moreover,
this issue disappears when site-owners use our method on the
complete set of user activities.

The indexer takes the activity time series of all the users
as input, hashes each of them into multiple hash buckets, and
reports sets of suspicious users that collide in the same hash
buckets. In order to calculate the hash buckets for a given set
of time series, the indexer uses a pre-generated random time
series r, calculates the cross-correlation between each time
series, and r, and finally calculates 2w + 1 hash indexes for
different lags. Here, w is a user-given parameter representing
the maximum allowable lag.Once hashed, the indexer finds a
list of suspicious users which are qualified users in qualified
buckets. Qualified users are those who have more than bw4 c
occurrences in a specific bucket. Similarly, qualified buckets
have more than bw4 c qualified users. We go through each
qualified bucket and pick qualified users in them to report
as suspicious users. The minimum number of occurrences
(bw4 c) to qualify is made dependent on w to avoid an explicit
parameter setting. We test the sensitivity of the parameter w
in the experiment section.

The listener listens to the suspicious users exclusively. In
this step, instead of using keywords, the Twitter stream is
filtered on suspicious user accounts. The listener is different
from the collector in a principled way. The listener receives
all the activities of a suspicious user over a period of T hours,
while the collector obtains only a sample of the activities. The
listener will form the activity time series of the suspicious
users and send them to the validator. The listener filters out
users with less than forty activities as discussed in [4].

The validator reads the suspicious time series from the
listener and verifies their validity. The validator calculates a
pairwise warped correlation matrix over the set of users and
clusters the users hierarchically up to a very restrictive distance
cutoff. A sample of hierarchical clusters is shown in Figure
2. After clustering, every singleton user is ignored as a false
positive, and the tightly connected clusters are reported as bots.
For clarity we describe the clustering process separately in the
next subsection.

B. Lag-sensitive Hashing
In this section, we describe our novel lag-sensitive hashing

technique. For this techinque, we adopt the concept of struc-
tured random projection. We project activity signals in 2w+1
directions, which are lagged vectors of a random vector r.
We achieve this by simply calculating the cross-correlation
between r and a given signal and picking the 2w + 1 values
around the symmetry. The following theorem describes the
best-case hashing scenario.

Theorem 1. If two infinitely long time series x and y are
exactly correlated at a lag l ≤ w then they must collide in
exactly 2w − l buckets.

Proof: Let us assume r is the reference object of the same
length as of x and y. Without losing generality, let us assume
ρxy(l) = 1.0 and l ≥ 0 (if l < 0, we can swap x and y).
Every alignment of r with x has a corresponding alignment of
r with y at lag l. Both of these alignments produce the same
correlation and result into a collision in the hash structure.
Formally, ρxr(i) = ρyr(i− l) for any i ∈ [−w,w]. There are
exactly three ways that this can happen.
• If i < 0, ρxr(−i) = ρrx(i) and ρyr(−i− l) = ρry(i+ l)

are equal because ri is aligned with xi and yi+l.
• If 0 < i < l, ρxr(i) and ρyr(i− l) = ρry(l− i) are equal

because ri is aligned with x1 and yl.
• If i > l, ρxr(i) = ρyr(i− l) is trivially true because ri is

aligned with x1 and yl.
For i < −(w − l), ρyr(i− l) is not calculated by our hash

function. Therefore, the only valid range for i is [−(w− l), w],
which gives us 2w − l collisions.

How well do cross-correlation coefficients capture DTW
distance or warped correlation? We calculate the DTW dis-
tances and cross-correlation between 5000 pairs of random
walks. We use the same w as the constraint window size and
the maximum allowable lag. We plot the maximum cross-
correlation (for lags in [−w,w]) against the DTW distance
in Figure 3(left), which shows the reciprocal relationship that
we exploit in our lag-sensitive hashing scheme.

We analyze the goodness of lagged projection compared to
classic random projection when hashing signals. There are two

0 5 10 15 20 25 30

20

30

40

0

10

50

60

70

80

90

100

Pruning Rate

Neighbor Rate

P
er

ce
n

ta
ge

BinFactor, (Bin Count = n*BF)

0

-0.5

0.5

1.0

2 4 6 8 10 12 14 16 18 200

DTW distance

M
ax

im
u

m
 C

ro
ss

-C
o

rr
e

la
ti

o
n

Lagged Random Projection

Classic Random Projection

Fig. 3. (left) Maximum cross-correlation shows reciprocity with DTW
distance.(right) Comparison with classic random projection based on pruning
and neighbor rates.

important metrics that we consider: The pruning rate is the
percentage of similarity comparisons that we can avoid while
finding any of the top-5 nearest neighbors without the hash
structure. The neighbor rate is the percentage of times we
can retrieve any of the top-5 nearest neighbors under warped
correlation using the hash structure. Ideally we want both the
metrics to be close to 100%.

We evaluate the neighbor rate and pruning rate on several
datasets from the UCR archive [11] for various bin counts.
We show a representative chart for the Trace dataset in Figure
3(right). This chart identifies the trade-off between the two
techniques. Classic random projection is better in pruning (i.e.
speed) while our proposed lagged projection is better in finding
the neighbors (i.e. accuracy). This is an understandable trade-
off between structured and true random projections. Since we
would like to find highly correlated groups, accurate lagged
projection is our method of choice.

C. Clustering

The validator calculates the pairwise constrained warped
correlation for all of the suspicious users. We use the maximum
allowable lag (i.e. w) from the indexer as the constraint size.

The validator then performs a hierarchical clustering on the
pairwise DTW distances using the “single” linkage technique,
which merges the closest pairs of clusters iteratively. A sample
dendrogram is shown in Figure 4, which shows the strong
clusters and the numerous false positives that we extract from
the time series.

We use a very strict cutoff threshold to extract highly dense
clusters and ignore all the remaining singleton users. For
example, in Figure 2, U1, U5 and U9 are clustered together
and U2 is left out as false positive. The cutoff we use is 0.995
warped correlation. The extracted clusters, therefore, contain
significant bot accounts.

As we pass more rounds of T hours, we can merge these
clusters to form bigger clusters. This is an important step,
because bots form correlated groups and may disband them
dynamically. Therefore, an already detected bot can reveal a
new set of bots in the next round of T hours. While merging
these clusters, we use a simple friend-of-friend technique.
If two clusters share one user in common, we merge them.
Although it may sound very simple, we see that such a simple
method can retain high precision because of the overwhelming
number of existing bots.

1

0.9

0.6

0.4

Clusters

False Positives

Cutoff=0.995

0.8

0.7

0.5

Fig. 4. A sample dendrogram of suspicious users’ activities. Only a few
users fall below the restricted cutoff. The rest of the users are cleared as false
positives.

IV. EMPIRICAL EVALUATION

All of the experiments in this section are exactly repro-
ducible with code and data provided on the supporting page
[2]. DeBot produces a daily report of the bot accounts by
analyzing the activities of the previous day. The daily reports
and detected bots are available at [2]. We have three inter-
dependent parameters: the number of buckets (B=5000) in the
hash table, the base window (T=2 hours), and the maximum
lag (w=20 seconds). Unless otherwise specified, the default
parameters are used for all experiments.

A. Bot Quality: Precision
Our method produces a set of clusters of highly correlated

users based solely on their temporal similarity. As mentioned
earlier, we find correlated users (> 0.995) who have more than
forty synchronous activities in T hours. In this subsection we
empirically validate the quality of the bots that we detect using
several methods.

1) Comparison with existing methods: Typically, there are
three approaches to evaluating the detected bots. The first
approach is to sample and evaluate the accounts manually
[9]. The second approach is to set up “honeypot” in order to
produce labeled data by attracting bots, and then to evaluate
a method by cross validation [15]. The last approach is to
check whether or not the accounts are suspended by Twitter
at a later time [16]. The first two approaches are suitable for
supervised methods and only produce static measurements at
one instance of time. Our major evaluation is done against
Twitter over three months. We also compare DeBot with two
other static techniques from the literature.

Comparison with Twitter and Bot or Not?: Twitter
suspends accounts that do not follow its rules [18]. To compare
the results of DeBot with Twitter’s suspension process, we
design two segments: static and dynamic. In the static segment,
we ran DeBot every 4 hours for sixteen days (May 18 - June
3, 2015) and linked all the clusters into one integrated set of
clusters using the friend-of-friend technique. We picked the top
ten clusters (9,134 bot accounts) to form our base set. From
June to August 2015, we probed the Twitter API every few
days to check if these detected accounts were suspended. As
you can see in Figure 5 (left), the number of bots suspended
by Twitter increased over time, and by the end of 12 weeks
45% of the bot accounts identified by DeBot were suspended.

In addition to this static segment, where we kept the set of
bots detected by DeBot fixed and probed Twitter over time,
we also performed dynamic detection. On August 28, 2015,
we started running DeBot every week and added the newly

8/28 9/5 9/11 9/18 9/25
0

6K

12K

18K

Date

#
 D

e
te

ct
e

d
 B

o
ts

8/28

#
 D

e
te

c
te

d
 B

o
ts

6/12 6/30 7/14 8/3
0

6K

12K

18K

Date

DeBot

Twitter

BoN

DeBot

BoN

Twitter

Static Dynamic

Fig. 5. Comparison between the number of bots detected by DeBot, Twitter,
and Bot or Not? project over time. (Note that we probed Twitter and Bot or
Not? only for the accounts in the base set.)

discovered bots to the base set of bots. In every run, we
listened to Twitter for 7 successive days. The results are shown
in Figure 5 (right). DeBot consistently found new bots every
week. We then continuously probed Twitter to check the status
of the newly detected bots. The results clearly show that the
number of bots we detect is increasing at a higher rate than
Twitter’s suspension rate. It is very likely that Twitter detects
more bots than they suspend, and that several relevant factors
such as country specific laws, need for graceful action etc.
may contribute to Twitter’s suspension system. The outcome
of our experiments is a reminder that Twitter may need to be
more aggressive in their suspension process. At the time this
is written, DeBot has accumulated a set of close to 500,000
bots (at a rate of close to 1500 bots per day!). The identities
of these bots are available in our supporting page [2].

An obvious question one might ask is: how many bots that
are not suspended by Twitter are worth detecting? We answer
this question by comparing our method with a successful
existing technique developed in the Truthy project [8], Bot
or Not?. BotOrNot is a supervised method that estimates the
probability of “being bot” for a given account. Having 50% or
more as the threshold, we got 59% relative support from Bot
or Not? in June 2015. We probed Bot or Not? two more times
in the static segment (see Figure 5) and notice no significant
change in detection performance. We also probed Bot or Not?
twice in the dynamic segment and observe that Bot or Not?
detected increasingly more bots as DeBot was growing the
base set. This supports our original argument that Twitter is
falling behind in detecting bots.

The reason why Bot or Not? is only half as accurate as
DeBot is that the method was trained for English-language
tweets, while DeBot catches all languages just based on
temporal synchronicity. Another reason is that Bot or Not? is
a supervised technique trained periodically. In contrast, DeBot
detects bots every day in a completely unsupervised manner.
Bot or Not? probably misses some recent dynamics of bots,
resulting in a smaller overlap.

A complementary question is: which method (DeBot or Bot
or Not?) produces bots that Twitter preferentially suspends?
We calculate the fraction of accounts that Twitter suspends
for Bot or Not? and DeBot exclusively. We see that Twit-
ter suspends more bots that are supported by Bot or Not?
(37.43%) than are supported by DeBot (21.06%). This bias
to a feature-based supervised method possibly indicates that
temporal synchronicity should be used by Twitter’s detection
and suspension mechanism.

a
la

n
2

6
o

fic
ia

l

C
E

L
E

B
R

IR
O

6
1

0
a

zu
h

a

O
N

IG
A

S
H

IM
A

c
h

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
e

c
o

n
d
s
-o

f-
M

in
u
te

Minutes-of-Hour Base Window (T)

40

60

80

100

120

140

160

180

200

N
u
m

b
e

r
o
f
A

cc
o

u
n

ts

10 20 30 40 50 60
5

6

7

8

9

10

11

12

13

14

N
u
m

b
e

r
o
f

C
lu

s
te

rs

Number of Clusters

Number of Accounts

Fig. 6. (left) Four bots showing different patterns in the minutes-of-hour
vs. seconds-of-minute plot. (right) Effect of base window on the detection
performance .

Comparison with per-user method: Per-user methods are
being developed actively by researchers. We compare DeBot
to a per-user method in [21], which tests the independence
of minute-of-an-hour and second-of-a-minutes with χ2 test.
Figure 6 (left) shows a set of bots and their second-of-minute
vs. minute-of-hour plots. The test cannot detect bot accounts
with uniformly distributed activities. 76% of the detected bots
by DeBot are supported by the χ2 test on average. There are
other per-user methods [5][15][7] that use machine-learned
classifiers to detect bots. The method in [7] is similar to
ours in considering temporal behavior. However, the method
is a supervised per-user method trained on a small dataset of
around a few thousand accounts. We do not compare DeBot
with this method since DeBot is unsupervised, works in real
time, and identifies several hundred bots every day.

2) Contextual Validation: One-quarter of the bots detected
by DeBot are not yet supported by Twitter, or Bot or Not?, or
the χ2 test. Are they worth finding? An exact answer to this
question really does not exist, due to the lack of ground truth.
To alleviate this concern, we evaluate the bots using contextual
information, such as tweet content, and get an average of
78.5% relative support. We also employ human judges to
compare the content of our bots against each other and achieve
94% support. You can find the details of these experiments and
recall estimation in [4].

B. Parameter Sensitivity
We have three inter-dependent parameters that we analyze in

this section. We iterate over each parameter, while keeping the
remaining parameters fixed. For the experiments in this section,
we use the keywords (swarmapp | youtube | instagram)
as our filter strings.

Base Window (T): We change the size of the base window,
T , to observe the change in detection performance. We see
consistent growth in number of clusters and bot accounts as T
increases. A larger base window ensures that more correlated
users can show up and be hashed. The end effect is that we
have higher quality clusters at the cost of a longer wait. Figure
7 (left) shows the results.

Number of Buckets (B): We change the number of buckets
in the hash structure. Too few buckets will induce unnecessary
collisions, while too many buckets spread users sparsely.
Figure 7 shows that the maximum number of clusters and bot
accounts can be achieved by using 2000 to 4000 buckets.

50

100

150

200

250

300

350
N

u
m

b
e
r

o
f
A

c
co

u
n

ts

8

10

12

14

16

18

20

22

N
u
m

b
e

r
o
f

cl
u
st

e
rs

1000 2000 4000 8000 16000 32000

Number of Buckets (B)

Number of Clusters

Number of Accounts

20
155

160

165

170

175

180

185

190

N
u
m

b
e
r

o
f
cl

u
s
te

rs

Maximum Lag (w)

0 5 10 30
340

360

380

400

420

440

460

480

N
u
m

b
e

r
o
f

a
cc

o
u
n

ts

Number of Clusters

Number of Accounts

Fig. 7. Effect of parameters on the detection performance, (left) number of
buckets and (right) maximum lag in seconds.

Maximum Lag (w): We check the impact of maximum
lag over detection performance. As previously described, user
activities require lag and warping sensitive correlation mea-
sures. For zero lag (essentially Euclidean distance), we obtain
significantly fewer clusters and bot accounts. For the lag of 30
seconds, the number of clusters is again low because the hash
structure is crowded with copies of each user, resulting in lots
of spurious collisions. Results are shown in Figure 7.

C. Scalability
Online methods depend on several degrees of freedom.

This makes analyzing and comparing scalability difficult. Two
quantities are most important: data rate and window size. The
Twitter streaming API has a hard limit on the data rate; we
receive tweets at a 48 tweet-per-second rate at the most. Even
if we increase the generality of the filter string, we cannot
increase the data rate.

Therefore, scalability depends on much of a user’s history
we can store and analyze. This is exactly the parameter T
in our problem definition. We set our largest experiment to
collect 1 million user accounts. This is a massive number of
time series to calculate the warping-invariant correlation for
all pairs. Note that it is easier to do trillions of subsequence
matching [14] in a streaming fashion at a very high data rate by
exploiting overlapping segments of successive subsequences.
Calculating pairwise DTW distances for a million users is
equivalent to a trillion distance calculation without overlapping
substructures. We exploit the efficiency of cross-correlation,
which enables our hashing mechanism to compute the clusters
and identify bots.

It takes T = 9.5 hours to collect 1 million users. The indexer
then takes 40 minutes to hash all the users. 24,000 users are
qualified for the listener, and the validator detects 93 clusters
of 1,485 accounts.

V. CONCLUSION

We illustrate that the presence of highly synchronous cross-
user activities reveals abnormalities and is a key to detecting
automated accounts. We develop an unsupervised method
which calculates cross-user activity correlations to detect bot
accounts in Twitter. We evaluate our method with per-user
method and Twitter suspension process. The evaluation shows
that Twitter suspends automated accounts with lower rate than
our method finds them. DeBot also detects more bots when
compared to per-user methods. DeBot is running and detecting
thousands of bot daily. Our future goal is to extend this work

to further understand bot behavior in social media to improve
trustworthiness and reliability of online data.

REFERENCES

[1] How twitter bots fool you into thinking they are real people. http://www.
fastcompany.com/3031500/how-twitter-bots-fool-you-into-thinking/
/-they-are-real-people.

[2] Supporting web page containing video, data, code and daily report.
www.cs.unm.edu/∼chavoshi/debot.

[3] E. Bingham and H. Mannila. Random projection in dimensionality
reduction: applications to image and text data. ACM SIGKDD 2001.

[4] N. Chavoshi, H. Hamooni, and A. Mueen. Identifying Correlated Bots
In Twitter. SocInfo 2016.

[5] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia. Detecting Automation
of Twitter Accounts: Are You a Human, Bot, or Cyborg? IEEE
Transactions on Dependable and Secure Computing, 9(6):811–824,
Nov. 2012.

[6] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over
uncooperative time series. ACM SIGKDD 2005.

[7] A. F. Costa, Y. Yamaguchi, A. J. M. Traina, C. T. Jr., and C. Faloutsos.
RSC: mining and modeling temporal activity in social media. ACM
SIGKDD 2015.

[8] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer.
Botornot: A system to evaluate social bots. In Proceedings of the 25th
International Conference Companion on World Wide Web, 2016.

[9] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and B. Y.
Zhao. Understanding latent interactions in online social networks. IMC
2010.

[10] E. Keogh. Exact indexing of dynamic time warping. In Proceedings
of the 28th international conference on Very Large Data Bases, VLDB
2002.

[11] E. Keogh, X. Xi, L. Wei, C. A. Ratanamahatana, T. Folias, Q. Zhu,
B. Hu, and H. Y. The UCR time series classification/clustering
homepage, 2011.

[12] H. Li, A. Mukherjee, B. Liu, R. Kornfield, and S. Emery. Detecting
Campaign Promoters on Twitter Using Markov Random Fields. ICDM
2014.

[13] A. Mueen and E. Keogh. Online discovery and maintenance of time
series motifs. ACM SIGKDD 2010.

[14] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining trillions of
time series subsequences under dynamic time warping. ACM SIGKDD
2012.

[15] G. Stringhini. Stepping Up the Cybersecurity Game: Protecting Online
Services from Malicious Activity. Thesis, UNIVERSITY OF CALI-
FORNIA Santa Barbara, 2014.

[16] K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended accounts in
retrospect: an analysis of twitter spam. IMC 2011.

[17] K. Thomas, V. Paxson, D. Mccoy, and C. Grier. Trafficking Fraudulent
Accounts : The Role of the Underground Market in Twitter Spam
and Abuse Trafficking Fraudulent Accounts. In USENIX Security
Symposium, 2013.

[18] Twitter. About suspended accounts. https://support.twitter.com/articles/
15790.

[19] Twitter. The Twitter Rules. https://support.twitter.com/articles/18311.
[20] A. Wang. Detecting Spam Bots in Online Social Networking Sites: A

Machine Learning Approach. In Data and Applications Security and
Privacy XXIV, volume 6166 of Lecture Notes in Computer Science,
pages 335–342. Springer Berlin Heidelberg, 2010.

[21] C. M. Zhang and V. Paxson. Detecting and analyzing automated
activity on twitter. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bio informatics), volume 6579 LNCS of PAM, 2011.

