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Abstract—We propose BotWalk, a near-real time adaptive
Twitter exploration algorithm to identify bots exhibiting novel
behavior. Due to suspension pressure, Twitter bots are constantly
changing their behavior to evade detection. Traditional super-
vised approaches to bot detection are non-adaptive and thus
cannot identify novel bot behaviors. We therefore devise an
unsupervised approach, which allows us to identify bots as they
evolve. We characterize users with a behavioral feature vector
which consists of (well-studied in isolation) metadata-, content-,
temporal-, and network-based features. We identify a random
bot from our seed bank, populated initially by previously-
labeled bots, gather this user’s followers’ features from Twitter
in real time, and employ an unsupervised ensemble anomaly
detection method in the multi-dimensional behavioral space.
These potential bots are folded into the seed bank and the
process is then repeated, with the new seeds’ features allowing
us to adaptively identify novel bot behavior. BotWalk allows for
the identification of on average 6,000 potential bots a day. Our
method allowed us to detect 7,995 previously undiscovered bots
from a sample of 15 seed bots with a precision of 90%.

I. INTRODUCTION

More than a billion people use online social networks for
information dissemination, entertainment, and social interac-
tion. Unfortunately, these platforms are exploited by abusive
automated accounts, also known as bots, for financial or polit-
ical gain. The presence of these bots is a constantly growing
problem that compromises the empowerment of online social
communities. Automated accounts easily allow botmasters
to spam inappropriate content [1], participate in sponsored
activities [2], and make money by selling accounts with human
followers [3]. An estimated 8.5% of Twitter accounts are bots
[4] and the bots are growing at a higher rate than the rate at
which Twitter suspends them.

The identification and suspension of bots is a challenging
problem for several reasons: these social networks are massive
– Twitter alone is estimated to contain over 300 million users
and billions of edges. Furthermore, the amortized cost of
creating a bot is equivalent to a mouse click by a human to
solve re-captcha. This is much less than that of detecting a bot,
and the cost of suspending a user incorrectly is much higher.
Lastly, the bot-masters creating these automated accounts are
constantly evolving the bots’ behavior to attempt to evade
detection. This is the typical ‘Red Queen’ effect, well known

in biology and cybersecurity, in which “It takes all the running
you can do, to keep in the same place”[5]. As Twitter’s
detection methods evolve, so do the botmasters’. To win this
arms race, or to even keep up, a bot detection method must
have the following characteristics:

• Very high detection rate, ideally higher than the rate at
which automated accounts can be created, which would
guarantee eradication of bots.

• Scalable, the method is robust in the face of increasing
social network size.

• Adaptive, which means it retains the above two properties
when bot-masters evolve. Simply training on labeled data
that matches the current state is not enough, for as the
bots’ behaviors change, static classifiers will quickly be-
come obsolete. This indicates that unsupervised solutions
that detect novel, anomalous behavior are likely to be
more effective in this quickly evolving environment.

• Completely automated, so that it can keep up with the
rate of bot-master activity.

In this chapter, we propose a bot detection technique using
Twitter’s restricted API access for online updates that is
adaptive, scalable and has the highest detection rate of current
methods. Our BotWalk algorithm uses an adaptive search
strategy to maximize detection rate in a rapidly changing social
network. In the Twitter network, BotWalk can identify up to
6000 bots per day and adapt to detect novel bot behaviors
automatically.

Problem Formulation: The high-level goal of this work is
to efficiently explore the evolving Twitter network and identify
bots manifesting continually changing behavioral patterns.

Contributions:
• Creation of BotWalk, a near-real time adaptive anomaly

detection framework with 90% precision in detecting bot
behavior in Twitter data

• Implementation of an adaptive approach to feature selec-
tion, necessitated by the limited amount of data accessible
in real-time and the rapidly changing Twitter environment

• Utilization of domain knowledge to intelligently partition
the feature space, leading to up to a 30% increase in
precision

• Assembly of a comprehensive Twitter dataset, collected
over the course of formulating this work, and made
available to the public [6]

II. RELATED WORK

Twitter bot detection has received significant interest in
the literature. Most current approaches focus on supervised,
non-adaptive methods [7][8][9]. Unfortunately, a supervised
approach has several shortcomings. The classification is only
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as good as the labeled data, which is often biased or outdated.
Supervised algorithms can be useful when trying to classify
a given user as a bot, but what if the goal is identification
of new bots? And what if these bots are constantly exhibiting
new behavioral patterns? It is in these cases that supervised
algorithms fall short.

In [10], the authors present an approach to semi-
automatically label users as bots by identifying several features
that can discriminate between obvious bots and human users.
For each feature, the threshold value has to be manually set,
and these values can vary depending on the candidate bot set,
which reduces the automated aspect of the work. Other feature-
based approaches use only a few linguistic attributes and test
on a small number of manually-labeled accounts [11], or only
temporal features in a supervised [12] or unsupervised way by
identifying highly-correlated activity streams [13]. The latter
approach has high recall and a low false positive rate, but is
very easy to evade since it is just based on one feature. One
study extracted a large number of features [14], but they used
them in a supervised fashion. We compare their detection rate
to BotWalk’s in Section VI-C4.

Our work is unique because it is an unsupervised ex-
ploratory method that is able to adaptively identify novel bot
behavior using a variety of features which capture different
dimensions of behavioral profiles. By using an unsupervised
method seeded from known bots, rather than simply training
a classifier on labeled data, BotWalk is able to discover new,
unknown behavioral patterns.

III. FRAMEWORK

Bot detection in a rapidly changing social network with
limited external visibility is a challenging computational prob-
lem. As with malware, bot masters continually modify bot
characteristics including communication patterns, content, and
connectivity. Additionally, Twitter’s query interface restric-
tions place significant limitations on the amount of new data
that can be collected relative to the amount being generated.

Figure 1 shows our approach, which combines known data,
domain expertise, and unsupervised anomaly detection. As
described in Algorithm 1, we begin by selecting a seed bots
(see Section VI-B) and a set of random users. This random set
can consist of both normal users and bots, as it is not labeled.
However, since estimates say that at most 8.5% of Twitter
users are bots [4], a random sample should on average adhere
to this constraint. The anomaly detection algorithm considers
the random user set as containing the ‘normal’ group.

For each Twitter user from the seed bot one-hop follower
neighborhood and the random user set, metadata such as
timeline and user account information is collected (Lines 6
– 10). Features of the seed bot neighborhood and random user
sets are then assembled from these raw data (Lines 11 – 13).
Feature selection and assembly is a major contribution of this
work, and is discussed in Section IV.

Finally, the ensemble anomaly detection algorithm is ap-
plied, resulting in identification of bots and normal users.
Elements from these sets are used to update the seed bot

Feature extraction

Seed bots, B

Users U

Exploration

Anomaly detection

Fig. 1: Overall framework of our bot identification algorithm

and random user sets respectively (Lines 14 – 16). The
anomaly detection algorithms and our partitioning approach
to ensemble anomaly detection is the topic of Section V.

Algorithm 1 NetworkExploration

1: Input: Set of seed bots B, Set of random users U ;
2: while explore = True do
3: b = pop random element from B;
4: Fuser = feature matrix of U ;
5: N(b) = follower neighborhood of b;
6: for neighbor c in N(b) do
7: // Metadata via the Twitter REST API
8: IM (c) = get_profile_info(c);
9: // Timeline info: 200 most recent tweets

10: IT (c) = get_timeline_info(c);
11: // Extract metadata-, content-, network-, and
12: // temporal-based features (Secs. IV-A-IV-D)
13: FN(c) = create_feat_vector(IM (c), IT (c));
14: (Bout,Uout) = UnsupervisedOutlierDet(

[Fuser, FN]); // (Secs. IV-A)
15: B.update(Bout);
16: U .update(Uout);

Our exploration method combines depth-first and breadth-
first exploration. Depth-first exploration constrains the search
space but limits the scope, so if a human node is reached it can
be difficult to return to a bot node. Breadth-first exploration
maximizes the likelihood of reaching other bots at each step,
since it is collecting all the followers of the current anomalous
node, but the scale quickly explodes (for example, some
Twitter users have tens of thousands of followers). Our method
allows us to maximize the likelihood of identifying bots by
collecting and analyzing the followers of the current seed
bot, while still constraining the search space by continuously
repeating the exploration process starting from individual
random anomalous users. This has the added benefit of making
our approach scalable by construction; by using a limited,
carefully-chosen stream selected from this huge, constantly-
changing network, this method is robust in the presence of
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increasing network size.

IV. FEATURE SELECTION AND DATA COLLECTION

To generate a comprehensive behavior profile for a given
user, we compile a large collection of features which capture
different aspects of a user’s behavior. Each feature (e.g.,
temporal bursts) alone has been shown to be effective for
identifying bots in a supervised setting (note that we target
unsupervised settings). However, bots are a diverse group and
can have many different behavioral patterns. Just looking for
bots with spamming content, for example, could ignore bots
that are trying to farm followers. By combining a large col-
lection of features indicative of different aspects of behavior,
we reduce bias and expand the quantity and types of bots that
we can identify.

Currently there is considerable interest in the machine
learning community in using latent features or learned repre-
sentations, rather than engineered features. While this has been
shown to be effective in some cases (such as classification and
link prediction), it requires a huge learning space. Online bot
behavior changes rapidly due to suspension pressure [5]. With
severely rate-limited data acquisition, massive data updates are
not feasible and impede latent feature generation, as the dataset
quickly becomes stale. Additionally, in the case of identifying
bots and potentially suspending users, there needs to be a level
of interpretability in the results. By using features that can be
understood, rather than latent features, we address this need.

Our features can be divided into four categories: metadata-,
content-, temporal-, and network-based. We will describe a
subset of members of each category, as well as the intuition
behind them. A full listing of the features from each category
is available on the BotWalk page [6].

A. Metadata-based features

Features that characterize a user’s profile shed light on the
level of effort a user put in when generating it. We would
expect a bot to have this process automated, so there may be
parts missing or repeated [15]. Bots may also want to provide
less information because what they are claiming is false, e.g.,
if the account claims the user is from California but all of
its tweets are coming from China, it would not want the geo-
enabled setting to be turned on. Conversely, real users often
like these types of features because they provide intelligent
shortcuts when entering content. Other attributes like age of
the account and whether the username was auto-generated
can provide valuable information about the likelihood that an
account is a bot. In addition to these features, we also look at
whether an account is protected or verified, neither of which
a bot account is likely to be, the total number of tweets and
number of followers, both of which are likely to be higher
in a bot account that has managed to persist on Twitter, and
several other metadata-related features.

B. Content-based features

Automated accounts are created for a specific purpose.
Whether it is to gain followers for marketing campaigns,

disseminate information, spam sponsored content, or collect
data on other users, there is a goal in mind for each ac-
count. There are many features in the content of the tweets
themselves that capture this goal-oriented behavior. Features
quantifying items like hashtags, URLs, and domains, both
on a tweet and user level, have been shown to be effective
in identifying bots [11][16]. Identifying repetition in these
entities is also informative. For example, a bot trying to
direct followers to a certain site will want to include that
site’s URL in as many tweets as possible. Perhaps they try
to use different URL shorteners to camouflage this effort, so
looking for repeated domains in the extended URL is also
helpful [17]. For hashtags, URLs, and domains, we look at
both the average number of entity per tweet as well as the
average number of tweets with that entity. We also quantify the
number of duplicate hashtags, URLs, and domains. Another
informative feature is the normalized retweet count. Creating
original content is costly for automated accounts, so retweeting
is an easy way to add a life-like feel to a profile without having
to generate this content [18]. Additional features we examine
include the maximum, minimum, mean, and standard deviation
of the Jaccard similarity of inter-tweet bags-of-words, the
number of special characters, and tweet lengths.

C. Temporal-based features

Analyzing the time series of tweets is a powerful way to dis-
tinguish between bots and humans; indeed, whole papers have
been written on bot identification based solely on temporal
characteristics [12][13][19]. Because there are limits to how
rapidly and how often a human being can tweet, quantification
of burstiness, defined as ��µ

�+µ [12], the average number of
tweets per day, and the duration of the longest tweet session
without a 10 minute break are informative features. Statistics
describing the minimum, maximum, mean, standard deviation,
and entropy of the inter-arrival time of consecutive tweets help
to identify bots whose goal is to get as much content out as
quickly as possible, or whose activity is on a programmed
schedule. Other features we use to identify scheduled behavior
are the p-values of the �2 test applied to the second-of-minute,
minute-of-hour, and hour-of-day distributions, which evaluates
whether tweets are drawn uniformly across these distributions.

D. Network-based features

Network-based features can be very helpful in characteriz-
ing Twitter user behavior. Research has shown that bots that
persist in the Twitter network tend to amass a large number
of followers [20] and friends. Figure 2 shows the connections
between a set of previously-labeled bots.

There are a variety of connections that can join nodes,
including follow, friends, and mention connections. We take
an ego-based approach to these relationships, quantifying the
out-degree of the user’s follow network, the out-degree of the
user’s friend network, and the out-degree of the user’s mention
network. These help to summarize the user’s connectivity to
others in a variety of ways.
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Fig. 2: Follower relationships between Twitter bots. Node
colors represent highly-correlated activity stream clusters (see
Section VI-B). Note the highly-connected nature of many of
the bots.

E. Feature selection and normalization

After encoding categorical features using one-hot encoding
we have over 9000 features. It is likely that not all of these
feature are informative, so we choose to remove features that
have the same value in 99.9% of samples, which reduces the
feature space to 130 features. We then use the L2 norm to
independently normalize each sample. For the partitioned out-
lier detection method, described in Section V-C, we perform
feature selection and feature normalization on each subset
separately.

F. Publicly-available dataset

Through the course of this research, we collected and ana-
lyzed a large body of Twitter data, which we are releasing for
public use on the BotWalk page [6]. This dataset was collected
using the Twitter API and the Tweepy Python library [21].
We collected 5 types of information: friendship relationships,
follower sets, activity streams, timelines (which includes a
user’s 200 most recent tweets), and user metadata. We store the
bot and follower metadata in a PostgreSQL database (exported
to CSV files for public release) and the user stream and
timeline data in JSON files.

V. ENSEMBLE ANOMALY DETECTION

In order to adaptively identify bots with ever-changing
behavior, we employ an unsupervised anomaly detection ap-
proach. Anomaly detection has been shown to be successful
in identifying samples with previously-unseen or fraudulent
behavior [22][23] , so it is appropriate for this application. We
employ true unsupervised anomaly detection in our method,
which learns from the structure of the data itself with no
outside guidance or labels.

To capture a variety of types of anomalous behavior, we
use an ensemble of anomaly detection algorithms. In general,
anomaly detection algorithms can be classified into four broad
categories: density-based; distance-based; angle-based; and,
more recently, isolation-based. For this work we use on from
each of these categories. We choose to use Local Outlier Factor
(LOF) as our baseline for comparison, since it is well-known,
commonly used, and shown to be effective on a wide variety of
data [24][23]. We find that this ensembling method improves
precision by 5% when compared to LOF alone.

Algorithm 2 UnsupervisedOutlierDet

1: Input: Feature Matrix F

2: for column c in F do

3: �2
c =

NP
i=1

(c�µ)2

N ;
4: if �2

c < 0.001 then
5: Remove c from F;
6: for row r in F do
7: x = rp

r21+...+r2i+...+r2n
; // Normalize row

8: Normalized LOF score, sLOF = Eq8(Eq2(x));
9: Normalized distance score, sD = Eq8(Eq4(x));

10: Normalized cos distance score, sC = Eq8(Eq5(x));
11: Normalized IF score, sIF = Eq8(Eq6(x));
12: sr = sLOF+sD+sC+sIF

4 ;
13: Return: Scores S;

A. Anomaly Detection Algorithms

1) Local Outlier Factor: We use Local Outlier Factor
(LOF) as our naı̈ve method because it is well-known, com-
monly used, and shown to be effective on a wide variety of
data. LOF uses the notion of k-distance (distk(x)), which is
defined as the distance to the k-th nearest neighbor of a point.
Local reachability distance (lrdk) of x is the average of the
reachability distances from x’s neighbors to x. Here Nk(x) is
the set of k-nearest neighbors of x.

lrdk(x) =
||Nk(x)||P

y2Nk(x)
max(distk(y), dist(x, y))

(1)

The LOF of a point x is the average of the ratios of the local
reachability of x and its k-nearest neighbors. LOF can capture
several normal clusters of arbitrary densities, which makes it
robust for any data domain. Formally, LOF is defined as below:

LOFk(x) =

P
y2Nk(x)

lrdk(y)
lrdk(x)

||Nk(x)||
(2)

2) Distance- and Angle-Based Methods: In addition to a
density-based measure, we use distance- and angle-based mea-
sures. We first generate an ideal ‘normal’ node by calculating
the median of each feature.

c = median(col) 8 col in F (3)

We then find the Euclidean distance between every user x and
this ideal individual c, giving us a distance-based outlier score.

DBD(x) =

p
(x1 � c1)2 + ...+ (xn � cn)2 (4)

To calculate an angle-based outlier score, we use the same
center node but calculate the cosine distance between the two
nodes.

ABD(x) =

x · c
||x|| ||c|| (5)

3) Isolation-based Method: Lastly, we use an Isolation
Forest algorithm [25]. Rather than constructing an idea of
normality and identifying instances that differ from that, this
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algorithm instead isolates outliers from normal samples. Given
our feature matrix F, this algorithm recursively splits the rows
of F by randomly selecting a column c and a split value s,
where min(c) <= s <= max(c). This recursive splitting
forms a tree structure, and an Isolation Forest contains k
such trees. The anomaly score is then defined based on the
path length h(x), which is the number of edges a sample
traverses before terminating in an external node. Specifically,
the anomaly score for a sample x from a size n dataset is
defined by the equation:

s(x, n) = 2

�E(h(x))
c(n) (6)

where E(h(x)) is the average of h(x) from a collection of
isolation trees, and c(n) is the average path length of an
unsuccessful search in a Binary Search Tree, which is defined
as

c(n) = 2H(n� 1)� (2(n� 1)/n) (7)

Intuitively, if a sample has very anomalous feature values, it
is going to be easily split from the remaining samples and
thus will have, on average, a much shorter path length than a
normal sample. Thus, when E(h(x)) is close to 0, s(x, n) is
close to 1, indicating it is very likely an anomalous sample.
When E(h(x)) is close to n, s(x, n) is close to 0, indicating
it is a normal sample.

B. Combining different anomaly detection scores

Each of the above methods produces a different type of
score: Equation 2 returns a local reachability score, Equation
4 returns a distance, Equation 5 returns a cosine distance,
and Equation 6 returns a score based on an averaged path
length. Before combining these scores, we need to regularize
and normalize them. We take the approach from [26][27],
which employs Gaussian scaling to normalize each outlier
score separately before combining them into a single score.

Let a user be x and the outlier score of x is s(x). We
scale each s(x) using a Gaussian distribution to produce a
probability p(x) between 0 and 1 of the user x being an outlier.

p(x) = max(0, erf(
s(x)� µsp

2�s

)) (8)

We then can average these probabilities to produce one outlier
score per user.

C. Applying domain knowledge to improve performance

In addition to the interpretability of the bot labels produced
by this method, another advantage to using observed features
is that we can employ domain knowledge of the feature space
to improve performance. As described in Section IV, we have
four feature categories: metadata-, content-, temporal-, and
network-based. These feature subsets describe different aspects
of a user’s online behavior and have different feature spaces
and scales. For example, the majority of the metadata features
are categorical, e.g., language and time zone, and thus explode
into a large feature space when using one-hot encoding. This
could potentially overwhelm other features, leading to results

biased towards metadata anomalies. Based on this observation,
we choose to partition the feature space into these four
subdomains and apply feature selection, sample normalization,
and anomaly detection separately in each feature sub-space.
We then combine these scores using the method described in
the previous section. We perform this partitioned anomaly de-
tection both with the ensemble of outlier detection algorithms
and local outlier factor, as a baseline. Our experimental results
show that this separation increases the precision of LOF by
30% and the ensemble method by 25%, achieving an precision
of 90% for both methods.

VI. EXPERIMENTAL ANALYSIS

A. Real-time data collection

Section III described the high-level exploration algorithm.
We now go into the details of the actual execution. All code
from these experiments is available on GitHub [28].

To expand from a seed user using the Twitter REST
API [29], we first collect the follower set of this user, limited
to the 5000 most recent followers to constrain the search
space. (These followers are also less likely to be suspended
since they have performed a recent activity, so in this way
we avoid wasting queries.) We then collect the timeline,
which is the 200 most recent tweets by the user, and the
user information, which is the metadata associated with this
account, for every follower in this set. We can collect 180
timelines every 15 minutes and metadata for 90,000 users
every 15 minutes (queries must be performed sequentially,
not concurrently). Once we have collected these data, we
extract our comprehensive set of features and perform anomaly
detection.

B. Experimental Design

We design our experiments to assess the following items:
• Is our algorithm effective at identifying bots?
• As we explore and replace the seed bots, do we continue

to find high-quality results?
• Are we able to identify bots with novel behavior as we

explore?
For our experiments, we first randomly select 15 non-
suspended bots from our labeled dataset. This dataset contains
⇠ 700, 000 labeled bot accounts identified by DeBot [13],
which finds users with highly-correlated activity streams.
Debot has a mathematically proven false positive rate of very
close to zero [19], so we can have high confidence in the
precision of these labels. Note that these users represent a
specific subset of bot behavior, as they are so-called ‘dumb’
bots, with an obvious behavioral giveaway. We start with these
users as seed bots, and then gradually adapt to identify bots
with different behavior patterns.

We explore from these seed bots using the four outlier
detection methods described in Section V: LOF and partitioned
LOF as our baselines, the ensemble of four anomaly detection
algorithms (density-, distance-, angle-, and isolation-based),
and this ensemble partitioned across the feature space. We
run one round of exploration per seed bot, yielding a total
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(a) Distribution of number of features in the 10th
or 90th percentile per user for 17,000 randomly-
selected users versus BotWalk-detected outliers

(b) Zoomed in view of the distribution of the
number of features in the 10th or 90th percentile
per user for outliers detected in the 4 experiments.

(c) Comparison of of the distribution of the number
of features in the 10th or 90th percentile per user
for exploration Levels 1, 2, and 3

Fig. 3: (left) BotWalk-detected anomalous users have many more ‘extreme’ feature values when compared to random users;
(center) Partitioned anomaly detection methods identify outliers with more ‘extreme’ feature values than those applied to the
feature set as a whole; (right) Anomalies identified in the first round of exploration have a different extreme feature distribution
when compared with those in the next two rounds, which are very similar.

of 15 rounds explored per method, which we call Level
1 exploration. We then randomly select 15 followers from
our most accurate method with the highest average pairwise
percent agreement, partitioned ensemble, and perform one
round of exploration for each of these 15 seed bots (again
using the partitioned ensemble method), which we call Level
2 exploration. We repeat this process one more time, and call
this Level 3 Exploration. The purpose of these multi-level
experiments is twofold: to examine how the identity of the
seed bot affects precision and to understand how the behavior
of the identified bots changes as we explore.

C. Validation

We use four measures to evaluate our results: manual
validation, examination of the distribution of feature values in
the 90th or 10th percentile, differences in the distributions of
specific feature values as modeled by the maximum likelihood
estimated of the empirical data, and a comparison with the
leading supervised method[14] and the leading unsupervised
method[19].

1) User Study: In fraud identification research, one chal-
lenge is that the ground truth is, in reality, unknowable. Only
the user or botmaster herself truly knows if a given account is
a bot. User studies are thus typically performed to manually
validate the results of the algorithm. While human labeling can
of course contain bias, it is still the standard way to label bot
accounts. We base our experimental design on methods from
the literature [9][30] to reduce bias as much as possible. We
first conduct a manual examination of a random sample of 20
anomalous users from each of the six experiments to evaluate
precision. The procedure for this examination is as follows: we
first train our three annotators by showing them 100 different
labeled bot accounts of different types. Next, we have them
label each account with ‘bot’, ‘human’, or ‘unknown’. We take
the majority vote for each account as its label and calculate
the average pairwise percent agreement, which is where the
agreements of all possible pairs are calculated and averaged.
Table I shows the results, along with the number of anomalous
users identified by BotWalk in each experiment. We estimate

Experiment Type
# of

BotWalk
bots

Precision Annotator
Agreement

LOF 3984 60% 67%
Ensemble 3928 65% 80%

Partitioned LOF 3633 90% 87%
Level 1

(Partitioned
Ensemble)

4040 90% 90%

Level 2 2215 85% 83%
Level 3 3302 75% 87%

TABLE I: Results from the user study for the four anomaly
detection methods and the three levels of exploration.

that starting from the initial 15 seed bots, over the three
rounds of exploration we identify 7,995 new bots, which is
over 500 times more than the initial seed bot set size. This
estimate is calculated by multiplying the number of BotWalk-
identified bots found by the calculated precision for each round
and summing them. By scaling these values we avoid over-
estimating this number.

Column 3 in Table I shows that even humans do not
always agree on what a bot looks like. However, apart from
unpartitioned LOF, which also has low precision, indicating
it is not an effective method in this context, all of our
experiments have average pairwise percent agreement values
of 80% or higher, which is described as an acceptable level
of agreement in the literature [31]. Without partitioning, using
an ensemble of anomaly detection algorithms improves the
precision by 5%. However, when partitioning is included, both
LOF and the ensemble have 90% precision. This means that
the human annotators agree with 90% of the bot classifications
given by our partitioned anomaly detection algorithms. While
partitioned LOF and the partitioned ensemble had the same
precision in this experiment, the ensemble had higher average
pairwise percent agreement than partitioned LOF. Further-
more, understanding that bot behavior continually changes,
having an ensemble of techniques may still provide better
anomaly detection for future evolving behaviors.

When examining the results for exploration, we can see that
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(a) Distribution of log of number of tweets. Ran-
dom users are modeled by exponentiated norm,
prev.-labeled bots by lognorm, and Level 1 by the
Beta distribution.

(b) Distribution of log of max inter-arrival times.
Random users are modeled by Beta, prev.-labeled
bots by log-Laplace, and Level 1 by Beta prime.

(c) Distribution of log of out-degree of the ego
network. Random users are modeled by exponen-
tiated power, while both prev.-labeled bots and
Level 1 are modeled by exponentiated Weibull.

Fig. 4: Distributions of a small subset of features for random users, Debot-labeled bots, and bots identified by Exploration
Level 1. Note that our identified bots display different behavior than both random users and previously-labeled bots.

as we explore further, the precision stays fairly high. Level 3
Exploration contains the followers of followers of followers of
our labeled bots, so the fact that we are still able to identify
a high percentage of bots shows that our exploration method
is effective. The slight dip in precision suggests that adding
some guidance into the system when selecting the seed bots
could be helpful. Perhaps choosing a small number of the most
anomalous followers and only adding those into the seed bank,
rather than a random set selected from all fairly anomalous
users, could improve performance. Investigations into these
types of enhancements are left to potential future work.

2) Extreme feature values: To profile the anomalous users
identified by BotWalk, we identify how many features each
potential bot has that are in the 10th or 90th percentile
when compared to a feature vector of 17,000 random users.
We limit this evaluation to integer- and floating point-valued
features. We then plot the distribution of these values for
all of our Level 1 Exploration experiments in Figure 3a.
We also include the percentiles for these random users for
reference. We can see that our identified anomalies have high
numbers of ‘extreme’ features, which shows that our algorithm
is successfully identifying anomalous users. Since we know
that the features in our comprehensive feature set are effective
at identifying bots, these results validate that we are indeed
identifying bots in our exploration.

Figure 3b is a zoomed-in version comparing these distribu-
tions for the different anomaly detection methods. We can see
that the partitioned versions of the outlier detection algorithms
are more effective at identifying highly anomalous users than
those applied to the feature space as a whole.

To examine how multiple iterations of the exploration
process affect the type of anomalous users we are identifying,
we compare the extreme feature values for the anomalies
found from Level 1, Level 2, and Level 3 Explorations. Figure
3c shows the results of this analysis. We can see that the
anomalous users’ behavior changes after the first round of
exploration, and then remains constant. This makes sense,
since for our first round we use Debot-labeled bots as our seed
bots, which tend to exhibit very obvious ‘dumb’ bot behavior,
whereas for the following rounds we use randomly-selected

Random
Users

Debot
Bots

Level
1 Bots

Level
2 Bots

Level
3 Bots

Random 100% 22.2 % 22.2% 16.7% 8.33%
Debot – 100% 33.3% 8.33% 8.33%

Level 1 – – 100% 40.9% 38.6%
Level 2 – – – 100% 59.1%

TABLE II: Percentage of features that have matching distri-
butions

anomalous followers as our seed bots.
3) Examination of feature distributions: We next wanted

to explore the differences in behavior between random users,
Debot-labeled bots, and the bots discovered in our three
levels of exploration. To perform this comparison, we took
a random sample of 10,000 of the previously-labeled bots,
10,000 random users, and the bots identified in each level
of exploration and modeled their distributions using the maxi-
mum likelihood estimation of the empirical data for the above-
described features. We find that BotWalk-discovered bots have
significantly different behavior than both Debot-labeled bots
and random users for many of our features. Furthermore,
we find that as we explore we are identifying bots that are
exhibiting novel behaviors.

Table II shows the percentage of features that have matching
MLE distributions for each pair of user sets. These results
show that BotWalk bots behave differently than both random
users and Debot-labeled bots. Furthermore, bots identified in
Level 3 exploration are the most dissimilar. This shows that
we are continuously identifying bots with novel behavior as
we explore. A subset of these distributions is shown in Figures
4a through 4c.

4) Comparison with known methods: We compare Bot-
Walk with the most promising unsupervised algorithm, De-
bot [13][19], and the most popular supervised Twitter bot
detection algorithm, BotOrNot [14]. We first evaluate what
percentage of our anomalous users these methods are able to
detect as bots. Note that we are examining the relative support
of these methods, not comparing performance, since this is
a one-sided comparison. Table III shows the results of this
study. We see that Debot only identifies between 8.6 and 21%
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Experiment Debot
Detection

BotOrNot
Detection

LOF 21% 49%
Ensemble 21% 51%

Partitioned LOF 17% 64%
Level 1 19% 60%
Level 2 11% 56%
Level 3 8.6% 49%

TABLE III: Detection levels of new bots by known methods

of our anomalous users, which shows that BotWalk-identified
bots are exhibiting novel behavior which is different from the
Debot-labeled seed bots. We find BotOrNot shows between
49-60% detection of our bots.

We next compare the bot-detection rate of these three
methods. This rate necessarily depends on the rate limitations
imposed by Twitter for all three methods. Assuming that these
restrictions are in place, our algorithm has a much higher
bot detection rate than these two leading methods. Since
supervised algorithms need to be given specific accounts to
test, the number of bots found depends on the query rate of
the algorithm and the prevalence of bots in Twitter. Using
BotOrNot as an example, which has a query rate of 180
requests per 15 minutes, 17,280 users could be tested per
day. Since the current estimate of bots in Twitter is 8.5%,
this method would yield on average 1,469 bots per day. Debot
needs time to collect and analyze users’ data, so it is limited
as well: Debot’s average detection rate is estimated to be
1,619 bots per day [32]. Our method easily beats both of
these, identifying on average 6,000 bots per day. Furthermore,
our algorithm is infinitely linearly scalable: the only shared
resource is the two seeds banks, and everything else can be
independent. Therefore, with additional parallel machines and
additional API keys, BotWalk’s detection rate could be even
higher.

VII. CONCLUSION

This chapter introduces BotWalk, arguably the first near-
real time unsupervised Twitter network exploration algorithm
that adaptively identifies bots exhibiting novel behavior. Key
contributions of this work are the implementation of an
adaptive approach to feature selection and the utilization of
domain knowledge to intelligently partition the feature space,
which leads to up to a 30% increase in precision. We perform
experiments to evaluate the performance of an ensemble of
outlier detection algorithms, achieving an precision of 90%.
We also perform three levels of iterative exploration and show
that we are able to identify bots that exhibit novel behavior at
a higher detection rate than existing methods.
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